Poly(ester amide)s (PEAs) are important synthetic polymeric materials. The excellent biodegradability and mechanical properties make the synthesis of such kinds polymers a research hotspot in the field of polymer chemistry. Herein
we report a novel strategy for accessing PEAs
via
the alternating copolymerization of easily synthesized aziridine derivatives and cyclic anhydrides with binary catalytic system consisting of benzyl alcohol (BnOH) and organic base (7-methyl-1
5
7-triazabicyclo[4.4.0]dec-5-ene (MTBD)) as catalyst
followed by the deprotection for the substitutes on the N atoms groups of the resultant copolymers using K
2
S
2
O
8
/Na
2
HPO
4
system. A detailed study on the debenzylation reaction was carried out. It was found that the K
2
S
2
O
8
/Na
2
HPO
4
system can effectively realize the debenzylation reaction involving the copolymer from 2
4-dimethoxy
-N
-benzylaziridine. The nine kinds of PEAs with different structures were synthesized from two types of monomers. The metal-free strategy
give these PEAs the potential to be utilized as hydrogels
tissue engineering
elastomers and smart materials as well as high-performance engineering plastics. Studies focused on further expanding the monomer scope and controlling the stereochemistry are currently in progress.
Ranganathan P, Chen C W, Rwei S P, Lee Y H, Ramaraj S K. Polym Degrad Stabil, 2020, 181: 109323. doi:10.1016/j.polymdegradstab.2020.109323http://dx.doi.org/10.1016/j.polymdegradstab.2020.109323
Winnacker M, Rieger B. Polym Chem, 2016, 7: 7039-7046. doi:10.1039/c6py01783ehttp://dx.doi.org/10.1039/c6py01783e
Gao Han(高晗), Xu Jun(徐军), Hu Xin(胡欣), Zhu Ning(朱宁), Guo Kai(郭凯). Progress in Chemistry(化学进展), 2018, (11): 1634-1645. doi:10.7536/PC180335http://dx.doi.org/10.7536/PC180335
Montané J, Armelin E, Asín L, Rodríguez G A, Puiggalí J. J Appl Polym Sci, 2002, 85: 1815-1824. doi:10.1002/app.10379http://dx.doi.org/10.1002/app.10379
Kluge M, Papadopoulos L, Magaziotis A, Tzetzis D, Zamboulis A, Bikiaris D N, Robert T. ACS Sustain Chem Eng, 2020, 8: 10812-10821
Abid M, Mhiri S, Bougarech A, Triki R, Abid S. Des Monomers Polym, 2020, 23: 16-24. doi:10.1080/15685551.2020.1727171http://dx.doi.org/10.1080/15685551.2020.1727171
Nakayama Y, Watanabe K, Tanaka R, Shiono T, Kawasaki N, Yamano N, Nakayama A. Int J Mol Sci, 2020, 21: 3674-3686. doi:10.3390/ijms21103674http://dx.doi.org/10.3390/ijms21103674
Wu D H, Zhang X R, Chen Y J, Yu S C, Zhao H T. Korean J Chem Eng, 2020, 37: 307-321. doi:10.1007/s11814-019-0426-4http://dx.doi.org/10.1007/s11814-019-0426-4
Rodríguez G A, Franco L, Puiggalí J. Biodegradable Polymers: Processing, Degradation and Applications. New York: Nova Science Publisher, 2011. 207-272
Fonseca A C, Gil M H, Simões P N. Prog Polym Sci, 2014, 39: 1291-1311. doi:10.1016/j.progpolymsci.2013.11.007http://dx.doi.org/10.1016/j.progpolymsci.2013.11.007
Rodriguez-Galan A, Franco L, Puiggali J. Polymers, 2011, 3: 65-99. doi:10.3390/polym3010065http://dx.doi.org/10.3390/polym3010065
Hadjichristidis N, Xu J X. Angew Chem Int Ed, 2021, 60: 6949-6954. doi:10.1002/anie.202015339http://dx.doi.org/10.1002/anie.202015339
Feng Y K, Klee D, Höcker H. J Appl Polym Sci, 2002, 86: 2916-2919. doi:10.1002/app.10461http://dx.doi.org/10.1002/app.10461
Sanchez S A, Basterretxea A, Mantione D, Etxeberria A, Elizetxea C, de la Calle A, García A S, Sardon H,Mecerreyes D. J Polym Sci, Part A: Polym Chem, 2016, 54: 2394-2402. doi:10.1002/pola.28114http://dx.doi.org/10.1002/pola.28114
Wilsens C H R M, Wullems N J M, Gubbels E, Yao Y, Rastogi S, Noordover B A J. Polym Chem, 2015, 6: 2707-2716. doi:10.1039/c4py01609bhttp://dx.doi.org/10.1039/c4py01609b
Deng X X, Li L, Li Z L, Lv A, Du F S, Li Z C. ACS Macro Lett, 2012, 1: 1300-1303. doi:10.1021/mz300456phttp://dx.doi.org/10.1021/mz300456p
Cui Y, Zhang M, Du F S, Li Z C. ACS Macro Lett, 2017, 6: 11-15. doi:10.1021/acsmacrolett.6b00833http://dx.doi.org/10.1021/acsmacrolett.6b00833
Xia T, Yue T J, Gu G G, Wan Z Q, Li Z L, Ren W M. Eur Polym J, 2020, 136: 109900. doi:10.1016/j.eurpolymj.2020.109900http://dx.doi.org/10.1016/j.eurpolymj.2020.109900
Yoshida K, Nakajima S, Wakamatsu T, Ban Y, Shibasaki M. Heterocycles, 1988, 27: 1167-1168. doi:10.3987/com-88-4525http://dx.doi.org/10.3987/com-88-4525
Chen S P, Liu D Q, Si L L, Chen L G, Yan X L. Synth Commun, 2017, 47: 238-244. doi:10.1080/00397911.2016.1261164http://dx.doi.org/10.1080/00397911.2016.1261164
Baker S R, Parsons A F, Wilson M. Tetrahedron Lett, 1998, 39: 331-332. doi:10.1016/s0040-4039(97)10480-4http://dx.doi.org/10.1016/s0040-4039(97)10480-4
Huffman W F, Holden K G, Buckley III T F, Gleason J G, Wu L. J Am Chem Soc, 1977, 99: 2352-2353. doi:10.1021/ja00449a062http://dx.doi.org/10.1021/ja00449a062
Alternating Copolymerization of Carbonyl Sulfide and Epichlorohydrin Catalyzed by Organic Lewis Pairs
Mechanistic Study on the Synthesis of Dihydrocoumarin-based Polyester Catalyzed by N-Heterocyclic Olefins-based Lewis Pairs
Organocatalytic Alternating Copolymerization of CO2/Epoxide/Anhydride for Synthesis of Polycarbonate/Polyester Copolymers
Related Author
No data
Related Institution
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University
Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology
Collgene of Chemical Engineering, Qingdao University of Science and Technology