Silk fibroin shows promising potential in dielectric and electrical energy storage application since that its structure unit has a large dipole moment (3.5 D) and its molecular structure has both soft and hard segments. In this study
for the first time
the dielectric properties of silk fibroin film under high electrical fields are investigated and the emphasis is given on the relationship between secondary structures and dielectric properties under high electrical fields. The results show that under high electrical fields
the change in the secondary structures of the silk fibroin is closely associated with its dielectric behavior. Specifically
the increase of the
β
-sheet structure is beneficial for the electrical strength enhancement and suppressing the dielectric loss of silk fibroin film. In addition
the high-field dielectric properties are significantly boosted by optimizing the preparation process of the silk fibroin film. The optimized film has a discharge energy density of 7.43 J/cm
3
and a charge-discharge efficiency of 79.8% under an electrical field of 500 MV/m
which demonstrates a promissing energy storage capability. This work provides basic data for exploring the application of silk fibroin in the dielectric field and also gives reference for further optimization of molecular structure in the future.
关键词
丝素蛋白高电场介电性能储能性能
Keywords
Silk fibroinHigh electric fieldDielectric propertiesEnergy storage properties
references
Huang X Y, Sun B, Zhu Y K, Li S T, Jiang P K. Prog Mater Sci, 2019, 100: 187-225. doi:10.1016/j.pmatsci.2018.10.003http://dx.doi.org/10.1016/j.pmatsci.2018.10.003
Li Q, Chen L, Gadinski M R, Zhang S H, Zhang G Z, Li H U, Iagodkine E, Haque A, Chen L Q, Jackson T N, Wang Q. Nature, 2015, 523(7562): 576-579. doi:10.1038/nature14647http://dx.doi.org/10.1038/nature14647
Zhu Y K, Zhu Y J, Huang X Y, Chen J, Li Q, He J L, Jiang P K. Adv Energy Mater, 2019, 9(36): 1901826. doi:10.1002/aenm.201901826http://dx.doi.org/10.1002/aenm.201901826
Barshaw E J, White J, Chait M J, Cornette J B, Bustamante J, Folli F, Biltchick D, Borelli G, Picci G, Rabuffi M. IEEE T Magn, 2007, 43(1): 223-225. doi:10.1109/tmag.2006.887682http://dx.doi.org/10.1109/tmag.2006.887682
Li Q, Yao F Z, Liu Y, Zhang G Z, Wang H, Wang Q. Ann Rev Mater Res, 2018, 48(1): 219-243. doi:10.1146/annurev-matsci-070317-124435http://dx.doi.org/10.1146/annurev-matsci-070317-124435
Wang Y F, Cui J, Yuan Q B, Niu Y J, Bai Y Y, Wang H. Adv Mater, 2015, 27(42): 6658-6663. doi:10.1002/adma.201503186http://dx.doi.org/10.1002/adma.201503186
Yu L, Hu X, Kaplan D L, Cebe P. Biomacromolecules, 2010, 11(10): 2766-2775. doi:10.1021/bm1008316http://dx.doi.org/10.1021/bm1008316
Nguyen A T, Huang Q L, Yang Z, Lin N, Xu G, Liu X Y. Small, 2015, 11(9-10): 1039-1054. doi:10.1002/smll.201402985http://dx.doi.org/10.1002/smll.201402985
Pei Y Z, Liu X, Liu S S, Lu Q, Liu J, Kaplan D L, Zhu H S. Acta Biomater, 2015, 13:168-176. doi:10.1016/j.actbio.2014.11.016http://dx.doi.org/10.1016/j.actbio.2014.11.016
Sang Y H, Li M R, Liu J J, Yao Y L, Ding Z Z, Wang L L, Xiao L Y, Lu Q, Fu X B, Kaplan D L. ACS Appl Mater Interfaces, 2018, 10(11): 9290-9300. doi:10.1021/acsami.7b19204http://dx.doi.org/10.1021/acsami.7b19204
Fan Suna(范苏娜), Chen Jie(陈杰), Gu Zhanghong(顾张弘), Yao Xiang(姚响), Zhang Yaopeng(张耀鹏). Acta Polymerica Sinica(高分子学报), 2021, 52(1): 29-46. doi:10.11777/j.issn1000-3304.2020.20172http://dx.doi.org/10.11777/j.issn1000-3304.2020.20172
Wang H, Du Y M, Li Y T, Zhu B W, Leow W R, Li Y G, Pan J S, Wu T, Chen X D. Adv Funct Mater, 2015, 25(25): 3825-3831. doi:10.1002/adfm.201501389http://dx.doi.org/10.1002/adfm.201501389
Wang C H, Hsieh C Y, Hwang J C. Adv Mater, 2011, 23(14): 1630-1634. doi:10.1002/adma.201004071http://dx.doi.org/10.1002/adma.201004071
Hang Y J, Ma J, Li S Y, Zhang X Y, Liu B, Ding Z Z, Lu Q, Chen H, Kaplan D L. ACS Biomater Sci Eng, 2019, 5(6): 2762-2768. doi:10.1021/acsbiomaterials.9b00369http://dx.doi.org/10.1021/acsbiomaterials.9b00369
Lu Q, Bai S M, Ding Z Z, Guo H, Shao Z Z, Zhu H S, Kaplan D L. Adv Mater Interfaces, 2016, 3(8): 1500687. doi:10.1002/admi.201500687http://dx.doi.org/10.1002/admi.201500687
Dong X D, Zhao Q, Xiao L Y, Lu Q, Kaplan D L. Biomacromolecules, 2016, 17(9): 3000-3006. doi:10.1021/acs.biomac.6b00863http://dx.doi.org/10.1021/acs.biomac.6b00863
Tsukada M, Gotoh Y, Nagura M, Minoura N, Kasai N, Freddi G. J Polym Sci, Part B: Polym Phys, 1994, 32(5): 961-968. doi:10.1002/polb.1994.090320519http://dx.doi.org/10.1002/polb.1994.090320519
Hu X, Lu Q, Sun L, Cebe P, Wang X Q, Zhang X H, Kaplan D L. Biomacromolecules, 2010, 11(11): 3178-3188. doi:10.1021/bm1010504http://dx.doi.org/10.1021/bm1010504
Hu X, Kaplan D L, Cebe P, Macromolecules, 2006, 39(18): 6161-6170. doi:10.1021/ma0610109http://dx.doi.org/10.1021/ma0610109
Jiang J Y, Zhang X, Dan Z K, Ma J, Lin Y H, Li M, Nan C W, Shen Y. ACS Appl Mater Interfaces, 2017, 9(35): 29717-29731. doi:10.1021/acsami.7b07963http://dx.doi.org/10.1021/acsami.7b07963
Yao Z H, Song Z, Hao H, Yu Z Y, Cao M H, Zhang S J, Lanagan M T, Liu H X. Adv Mater, 2017, 29(20): 1601727. doi:10.1002/adma.201601727http://dx.doi.org/10.1002/adma.201601727
Lao J P, Xie H A, Shi Z Q, Li G, Li B, Hu G H, Yang Q L, Xiong C X. ACS Sustain Chem Eng, 2018, 6(5): 7151-7158. doi:10.1021/acssuschemeng.8b01219http://dx.doi.org/10.1021/acssuschemeng.8b01219
Chen H, Li X Q, Yu W C, Wang J Y, Shi Z Q, Xiong C X, Yang Q L. Biomacromolecules, 2020, 21(7): 2929-2937. doi:10.1021/acs.biomac.0c00732http://dx.doi.org/10.1021/acs.biomac.0c00732
Rabuffi M, Picci G. IEEE T Plasma Sci, 2002, 30(5): 1939-1942. doi:10.1109/tps.2002.805318http://dx.doi.org/10.1109/tps.2002.805318