Hu Xiao-bo,Sun Jing-yuan,Jiang Bin-bo,et al.Liquid Containing Particle Polymerization: Ethylene/α-Olefin Reaction in a New Environment[J].ACTA POLYMERICA SINICA,2021,52(09):1138-1147.
Hu Xiao-bo,Sun Jing-yuan,Jiang Bin-bo,et al.Liquid Containing Particle Polymerization: Ethylene/α-Olefin Reaction in a New Environment[J].ACTA POLYMERICA SINICA,2021,52(09):1138-1147. DOI: 10.11777/j.issn1000-3304.2021.21046.
Liquid Containing Particle Polymerization: Ethylene/α-Olefin Reaction in a New Environment
-hexane) content in the process of ethylene/1-hexene copolymerization
three polymerization environments of pure gas phase environment
poor
n
-hexane environment and rich
n
-hexane environment were established. The "comonomer effect" and the "cosolubility effect" collectively affect the copolymerization reaction. The results show that the polymerization activity decreases in the pure gas phase environment
due to the capillary condensation inside the dry particles
and the comonomer effect dominates. In the poor
n
-hexane environment
because of the high molar concentration ratio of 1-hexene/ethylene in the wet particles at the initial stage
the polymerization activity remains basically unchanged under the competition of the comonomer effect and the cosolubility effect. With the increase of
n
-hexane content
co-solubility effect dominates
and the polymerization activity rises. The liquid-containing particle polymerization mode that the molar concentration ratio of 1-hexene/ethylene in the gas phase and slurry environment is the best maximizes the polymerization activity. In the rich
n
-hexane environment
the polymerization activity decreased slightly due to the dilution of 1-hexene concentration by
n
-hexane. The short chain branch degree of polyethylene products is almost the same in the pure gas phase environment and the poor
Kalay G, Sousa R A, Reis R L, Cunha A M, Bevis M J. J Appl Polym Sci, 1999, 73(12): 2473-2483. doi:10.1002/(sici)1097-4628(19990919)73:12<2473::aid-app16>3.0.co;2-ohttp://dx.doi.org/10.1002/(sici)1097-4628(19990919)73:12<2473::aid-app16>3.0.co;2-o
Alizadeh A, McKenna T F. Macromol React Eng, 2014, 8: 419-433. doi:10.1002/mren.201300165http://dx.doi.org/10.1002/mren.201300165
Namkajorn M, Alizadeh A, Somsook E, McKenna T F. Macromol Chem Phys, 2014, 215(9): 873-878. doi:10.1002/macp.201300757http://dx.doi.org/10.1002/macp.201300757
Alizadeh A, Namkajorn M, Somsook E, McKenna T F. Macromol Chem Phys, 2015, 216(9): 985-995. doi:10.1002/macp.201500023http://dx.doi.org/10.1002/macp.201500023
McKenna T F L. Macromol React Eng, 2019, 13(2): 1800026. doi:10.1002/mren.201800026http://dx.doi.org/10.1002/mren.201800026
Chien J C W, Nozaki T. J Polym Sci Polym Chem, 1993, 31(1): 227-237. doi:10.1002/pola.1993.080310127http://dx.doi.org/10.1002/pola.1993.080310127
Heiland K, Kaminsky W. Die Makromolekulare Chemie: Macromol Chem Phys, 1992, 193(3): 601-610. doi:10.1002/macp.1992.021930305http://dx.doi.org/10.1002/macp.1992.021930305
Köppl A, Babel A I, Alt H G. J Mol Catal A-Chem, 2000, 153(1-2): 109-119. doi:10.1016/s1381-1169(99)00310-6http://dx.doi.org/10.1016/s1381-1169(99)00310-6
Galland G B, Seferin M, Mauler R S, Dos Santos J H Z. Polym Int, 1999, 48(8): 660-664. doi:10.1002/(sici)1097-0126(199908)48:8<660::aid-pi212>3.0.co;2-lhttp://dx.doi.org/10.1002/(sici)1097-0126(199908)48:8<660::aid-pi212>3.0.co;2-l
Walter P, Trinkle S, Suhm J, Mäder D, Friedrich C, Mülhaupt R. Macromol Chem Phys, 2000, 201(5): 604-612. doi:10.1002/(sici)1521-3935(20000301)201:5<604::aid-macp604>3.0.co;2-ihttp://dx.doi.org/10.1002/(sici)1521-3935(20000301)201:5<604::aid-macp604>3.0.co;2-i
Namkajorn M, Alizadeh A, Romano D, Rastogi S, McKenna T F. Macromol Chem Phys, 2016, 217(13): 1521-1528. doi:10.1002/macp.201600107http://dx.doi.org/10.1002/macp.201600107
Bergstra M F, Weickert G. Macromol Mater Eng, 2005, 290(6): 610-620. doi:10.1002/mame.200500085http://dx.doi.org/10.1002/mame.200500085
Andrade F N, McKenna T F L. Macromol Chem Phys, 2017, 218(20): 1700248. doi:10.1002/macp.201700248http://dx.doi.org/10.1002/macp.201700248
Chao K C, Seader J D. Aiche J, 1961, 7(4):598-605. doi:10.1002/aic.690070414http://dx.doi.org/10.1002/aic.690070414
Khare N P, Seavey K C, Liu Y A, Ramanathan S, Lingard S, Chen C C. Ind Eng Chem Res, 2002, 41(23): 5601-5618. doi:10.1021/ie020451nhttp://dx.doi.org/10.1021/ie020451n
Wu L, Zhou J M, Lynch D T, Wanke S E. Appl Catal A-gen, 2005, 293: 180-191. doi:10.1016/j.apcata.2005.07.030http://dx.doi.org/10.1016/j.apcata.2005.07.030
Awudza J A M, Tait P J T. J Polym Sci, Part A: Polym Chem, 2008, 46(1): 267-277. doi:10.1002/pola.22378http://dx.doi.org/10.1002/pola.22378
Białek M, Czaja K. Polymer, 2000, 41(22): 7899-7904. doi:10.1016/s0032-3861(00)00153-1http://dx.doi.org/10.1016/s0032-3861(00)00153-1
Zhou Z M, Cheng Z M, Li Z, Yuan W K. Chem Eng Sci, 2004, 59(20): 4305-4311. doi:10.1016/j.ces.2004.06.023http://dx.doi.org/10.1016/j.ces.2004.06.023
Chen Meijuan(陈美娟). Investigation of the Sorption and Diffusion in Polyethylene by Gravimetric and NMR Methods and Its Application(基于重量法和核磁共振法的聚乙烯中溶解扩散行为研究及其应用). Doctoral Dissertation of Zhejiang University(浙江大学博士学位论文), 2014. doi:10.14257/astl.2014.45.22http://dx.doi.org/10.14257/astl.2014.45.22
Wu W Q, Yang Y R, Luo G H, Wang J D, Jiang B B, Wang S F, Han G D. US patent 9174183B2. 2015-11-03
Hu Xiaobo(胡晓波), Yang Yao(杨遥), Jiang Binbo(蒋斌波), Wang Jingdai(王靖岱), Yang Yongrong(阳永荣). Acta Polymerica Sinica(高分子学报), 2021, 52(2): 186-195. doi:10.11777/j.issn1000-3304.2021.21046http://dx.doi.org/10.11777/j.issn1000-3304.2021.21046
Seger M R, Maciel G E. Anal Chem, 2004, 76: 5734-5747. doi:10.1021/ac040104ihttp://dx.doi.org/10.1021/ac040104i
Synthesis of Pyrene Based α-Diimide Nickel Catalysts for Ethylene Polymerization/Copolymerization
Iron Complex Catalysts in Ethylene Reactivity: from Concept to Commercialization
Synthesis of Long-chain-branched High-density Polyethylene with Ziegler-Natta Catalyst and ω-Alkenylmethyldichlorosilane Copolymerization-Hydrolysis Chemistry
Related Author
No data
Related Institution
Department of Polymer Science and Engineering, University of Science and Technology of China
Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences
Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology
Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences
CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Acadamy of Sciences