浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 生态环境高分子材料实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
Xian-hong Wang, E-mail: xhwang@ciac.ac.cn
Published:20 August 2021,
Published Online:21 June 2021,
Received:23 February 2021,
Revised:07 March 2021,
扫 描 看 全 文
曹瀚,巩如楠,周振震等.功能化二氧化碳基多元醇的精准合成[J].高分子学报,2021,52(08):1006-1014.
Cao Han,Gong Ru-nan,Zhou Zhen-zhen,et al.Precise Synthesis of Functional Carbon Dioxide-polyols[J].ACTA POLYMERICA SINICA,2021,52(08):1006-1014.
曹瀚,巩如楠,周振震等.功能化二氧化碳基多元醇的精准合成[J].高分子学报,2021,52(08):1006-1014. DOI: 10.11777/j.issn1000-3304.2021.21056.
Cao Han,Gong Ru-nan,Zhou Zhen-zhen,et al.Precise Synthesis of Functional Carbon Dioxide-polyols[J].ACTA POLYMERICA SINICA,2021,52(08):1006-1014. DOI: 10.11777/j.issn1000-3304.2021.21056.
二氧化碳基多元醇(CO
2
-polyol)是通过二氧化碳与环氧化物如环氧丙烷的调聚反应合成的一类端羟基功能化低聚物,然而具有后修饰特点的功能化CO
2
-polyol的研究则少有报道. 本文将衣康酸这一新型起始剂引入到环氧丙烷和CO
2
的调聚反应中,成功地制备了双键功能化的CO
2
-polyol. 同时,衣康酸的生物来源属性进一步提高了生物碳比例,使得该多元醇的合成路线更为符合绿色可持续的理念. 针对衣康酸存在酸性较强、双键较活泼等不利于PO/CO
2
调聚反应的因素,采用具有多中心协同催化作用的铝卟啉低聚物催化剂,实现了含碳碳双键的CO
2
-polyol的高效可控制备,且其链长和结构可调. 所合成的具有活泼双键的不饱和多元醇为多种功能化二氧化碳基聚氨酯的合成提供了方便可行的操控平台.
CO
2
-polyols
comprised of both rigid carbonate and soft ether
contribute to important raw material innovation in the polyurethane industry
however
only rare examples have demonstrated functional CO
2
-polyols for the purpose of post-modification. In this work
itaconic acid as a novel starter was introduced in the telomerization of propylene oxide and CO
2
to afford alkene functionalized CO
2
-polyol. Parenthetically
the bio-renewable nature of itaconic acid also raised the bio-based carbon ratio in the structure of polyol
which further elevated the sustainability impact of the whole synthetic process. The major challenge of the preparation arose from the compatibility between itaconic acid and the involved CO
2
/epoxide copolymerization catalyst. The first is that the strong acidity of itaconic acid may retard the catalysis and form certain amount of cyclic carbonate as by-product. The second is to retain the active double bond requires rather low reaction temperature which also decreases the activity. Nevertheless
we adopted a highly active Al(Ⅲ) porphyrin oligomer catalyst to prepare itaconic acid based CO
2
-polyol. Its multisite cooperative catalysis helped to overcome such obstacles
mediating the telomerization in both effective and well-controlled manner. Turnover frequency values of 2080-2500 h
-1
were achieved even in the prerequisite of the full conversion and low temperature (60
o
C). The selectivity was also remarkable as the amount of cyclic carbonate was controlled around 1 wt% in all cases. Meanwhile
the afforded polyols had tunable chain length of 1900-3800 g/mol and carbonate fraction of 15.9%-54.3%
which can be customized by adjusting the itaconic acid feed and CO
2
pressure. Finally
a proof-of-concept study disclosed the activity of double bond which remained intact in the derived polyurethane. Hence
by the introduction of such unsaturated CO
2
-polyols
this work may provide a viable synthetic toolbox
allowing the development of functional polyurethanes in nearly any direction.
二氧化碳衣康酸不饱和多元醇聚氨酯铝卟啉低聚物催化剂
Carbon dioxideItaconic acidUnsaturated polyolPolyurethaneAl(Ⅲ) porphyrin oligomer catalyst
Grignard B, Gennen S, Jerome C, Kleij A W, Detrembleur C. Chem Soc Rev, 2019, 48(16): 4466-4514. doi:10.1039/c9cs00047jhttp://dx.doi.org/10.1039/c9cs00047j
Cao H, Wang X H. Synthetic Polymer Chemistry: Innovations and Outlook. Cambridge: The Royal Society of Chemistry, 2020. 197-242
Li Y, Zhang Y Y, Hu L F, Zhang X H, Du B Y, Xu J T. Prog Polym Sci, 2018, 82: 120-157. doi:10.1016/j.progpolymsci.2018.02.001http://dx.doi.org/10.1016/j.progpolymsci.2018.02.001
Chen Xuesi(陈学思), Chen Guoqiang(陈国强), Tao Youhua(陶友华), Wang Yuzhong(王玉忠), Lv Xiaobing(吕小兵), Zhang Liqun(张立群), Zhu Jin(朱锦), Zhang Jun(张军), Wang Xianhong(王献红). Acta Polymerica Sinica(高分子学报), 2019, 50(10): 1068-1082. doi:10.11777/j.issn1000-3304.2019.19015http://dx.doi.org/10.11777/j.issn1000-3304.2019.19015
Lv Xiaobing(吕小兵). Acta Polymerica Sinica(高分子学报), 2016, (9): 1166-1178. doi:10.11777/j.issn1000-3304.2016.16151http://dx.doi.org/10.11777/j.issn1000-3304.2016.16151
von der Assen N, Sternberg A, Kätelhön A, Bardow A. Faraday Discuss, 2015, 183: 291-307. doi:10.1039/c5fd00067jhttp://dx.doi.org/10.1039/c5fd00067j
Langanke J, Wolf A, Hofmann J, Böhm K, Subhani M A, Müller T E, Leitner W, Gürtler C. Green Chem, 2014, 16(4): 1865-1870. doi:10.1039/c3gc41788chttp://dx.doi.org/10.1039/c3gc41788c
Fu Shuangbin(付双滨), Qin Yusheng(秦玉升), Qiao Lijun(乔立军), Wang Xianhong(王献红), Wang Fosong(王佛松). Acta Polymerica Sinica(高分子学报), 2019, 50(4): 338-343. doi:10.11777/j.issn1000-3304.2018.18274http://dx.doi.org/10.11777/j.issn1000-3304.2018.18274
Pohl M, Danieli E, Leven M, Leitner W, Blümich B, Müller T E. Macromolecules, 2016, 49(23): 8995-9003. doi:10.1021/acs.macromol.6b01601http://dx.doi.org/10.1021/acs.macromol.6b01601
Darensbourg D J. Green Chem, 2019, 21(9): 2214-2223. doi:10.1039/c9gc00620fhttp://dx.doi.org/10.1039/c9gc00620f
Böhm K, Maerten S G, Liauw M A, Müller T E. Macromolecules, 2020, 53(16): 6861-6865. doi:10.1021/acs.macromol.0c00825http://dx.doi.org/10.1021/acs.macromol.0c00825
Buchner G A, Wulfes N, Schomäcker R. J CO2 Util, 2020, 36: 153-168. doi:10.1016/j.jcou.2019.11.010http://dx.doi.org/10.1016/j.jcou.2019.11.010
von der Assen N, Bardow A. Green Chem, 2014, 16(6): 3272-3280. doi:10.1039/c4gc00513ahttp://dx.doi.org/10.1039/c4gc00513a
Meys R, Katelhon A, Bardow A. Green Chem, 2019, 21(12): 3334-3342. doi:10.1039/c9gc00267ghttp://dx.doi.org/10.1039/c9gc00267g
Wang J, Zhang H M, Miao Y Y, Qiao L J, Wang X H, Wang F S. Green Chem, 2016, 18(2): 524-530. doi:10.1039/c5gc01373ahttp://dx.doi.org/10.1039/c5gc01373a
Gong R N, Cao H, Zhang H M, Qiao L J, Wang F S, Wang X H. Macromolecules, 2020, 53(15): 6322-6330. doi:10.1021/acs.macromol.0c00606http://dx.doi.org/10.1021/acs.macromol.0c00606
Scharfenberg M, Hilf J, Frey H. Adv Funct Mater, 2018, 28(10): 1704302. doi:10.1002/adfm.201704302http://dx.doi.org/10.1002/adfm.201704302
Cyriac A, Lee S H, Varghese J K, Park J H, Jeon J Y, Kim S J, Lee B Y. Green Chem, 2011, 13(12): 3469-3475. doi:10.1039/c1gc15722ahttp://dx.doi.org/10.1039/c1gc15722a
Ma K, Bai Q, Zhang L, Liu B. RSC Adv, 2016, 6(54): 48405-48410. doi:10.1039/c6ra07325ehttp://dx.doi.org/10.1039/c6ra07325e
Wang J, Zhang H M, Miao Y Y, Qiao L J, Wang X H, Wang F S. Polymer, 2016, 100: 219-226. doi:10.1016/j.polymer.2016.08.039http://dx.doi.org/10.1016/j.polymer.2016.08.039
Hauenstein O, Agarwal S, Greiner A. Nat Commun, 2016, 7(1): 11862. doi:10.1038/ncomms11862http://dx.doi.org/10.1038/ncomms11862
Subhani M A, Köhler B, Gürtler C, Leitner W, Müller T E. Polym Chem, 2016, 7(24): 4121-4126. doi:10.1039/c6py00458jhttp://dx.doi.org/10.1039/c6py00458j
Jia M, Zhang D, de Kort G W, Wilsens C H R M, Rastogi S, Hadjichristidis N, Gnanou Y, Feng X S. Macromolecules, 2020, 53(13): 5297-5307. doi:10.1021/acs.macromol.0c01068http://dx.doi.org/10.1021/acs.macromol.0c01068
Wang R, Ma J, Zhou X, Wang Z, Kang H, Zhang L, Hua K C, Kulig J. Macromolecules, 2012, 45(17): 6830-6839. doi:10.1021/ma301183khttp://dx.doi.org/10.1021/ma301183k
He M, Sun Y, Han B. Angew Chem Int Ed, 2013, 52(37): 9620-9633. doi:10.1002/anie.201209384http://dx.doi.org/10.1002/anie.201209384
Liu S, Qin Y, Qiao L, Miao Y, Wang X, Wang F. Polym Chem, 2016, 7(1): 146-152. doi:10.1039/c5py01338khttp://dx.doi.org/10.1039/c5py01338k
Cao H, Qin Y S, Zhuo C W, Wang X H, Wang F S. ACS Catal, 2019, 9(9): 8669-8676. doi:10.1021/acscatal.9b02741http://dx.doi.org/10.1021/acscatal.9b02741
Cao Han(曹瀚), Zhou Qinghai(周庆海), Wang Xianhong(王献红). CN patent, 202010411257.1. 2020-05-15. doi:10.1016/j.ecohyd.2020.01.001http://dx.doi.org/10.1016/j.ecohyd.2020.01.001
Cao H, Zhang R Y, Zhou Z Z, Liu S J, Tao Y H, Wang F S, Wang X H. ChemRxiv, 2021, doi:10.26434/chemrxiv.14068763.v1http://dx.doi.org/10.26434/chemrxiv.14068763.v1.
Zhang Xinghong(张兴宏), Huang Yijun(黄亦军), Liu Fei(刘斐), Sun Xueke(孙学科), Fan Zhiqiang(范志强), Qi Guorong(戚国荣). Acta Polymerica Sinica(高分子学报), 2009, (6): 546-552. doi:10.3321/j.issn:1000-3304.2009.06.009http://dx.doi.org/10.3321/j.issn:1000-3304.2009.06.009
Gao Y, Qin Y, Zhao X, Wang F, Wang X. J Polym Res, 2012, 19(5): 9878. doi:10.1007/s10965-012-9878-5http://dx.doi.org/10.1007/s10965-012-9878-5
Wang Y, Fan J, Darensbourg D J. Angew Chem Int Ed, 2015, 54(35): 10206-10210. doi:10.1002/anie.201505076http://dx.doi.org/10.1002/anie.201505076
Honda S, Sugimoto H. Macromolecules, 2016, 49(18): 6810-6816. doi:10.1021/acs.macromol.6b01505http://dx.doi.org/10.1021/acs.macromol.6b01505
0
Views
271
下载量
8
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution