浏览全部资源
扫码关注微信
纤维材料改性国家重点实验室 先进低维材料中心 东华大学材料科学与工程学院 上海 201620
Shu-guang Yang, E-mail: shgyang@dhu.edu.cn
Published:20 October 2021,
Published Online:24 June 2021,
Received:01 March 2021,
Revised:22 March 2021,
扫 描 看 全 文
刘德中,杨曙光.多组分高分子复合物纤维的制备与性能调控[J].高分子学报,2021,52(10):1353-1360.
Liu De-zhong,Yang Shu-guang.Preparation and Properties Modulation of Multi-component Polymer Complex Fibers[J].ACTA POLYMERICA SINICA,2021,52(10):1353-1360.
刘德中,杨曙光.多组分高分子复合物纤维的制备与性能调控[J].高分子学报,2021,52(10):1353-1360. DOI: 10.11777/j.issn1000-3304.2021.21060.
Liu De-zhong,Yang Shu-guang.Preparation and Properties Modulation of Multi-component Polymer Complex Fibers[J].ACTA POLYMERICA SINICA,2021,52(10):1353-1360. DOI: 10.11777/j.issn1000-3304.2021.21060.
多组分是实现纤维性能提升和调控的有效手段. 利用传统方法制备的多组分纤维,不同高分子之间很难达到分子层面相容. 高分子复合物是不同高分子高度相容的聚集组装体系. 本工作研究聚氧化乙烯(PEO)、聚乙烯醇(PVA)和聚丙烯酸(PAA) 3种组分制备复合物纤维. 利用红外光谱、X射线衍射、示差扫描量热、扫描电子显微镜和力学拉伸等方法分别表征氢键复合、纤维的聚集态结构和力学性质. 研究结果表明,PEO/PVA/PAA纤维不同组分高度相容,通过改变纤维中组分的含量,可以实现对多组分复合物纤维的性能调控. 纤维中柔性PEO组分含量增加,可以实现由塑性到弹性的转变,并且纤维在湿度场下表现出形状记忆与可修复行为.
A multi-component hydrogen-bonded poly(ethylene oxide)/poly(vinyl alcohol)/poly(acrylic acid) (PEO/PVA/PAA) complex fiber is fabricated by “inhibition-formation method”. PAA powder
PVA powder and PEO powder are dissolved in deionized water
respectively. They are mixed with alkali to obtain a spinning solution by inhibiting the hydrogen complexation. The total concentration of spinning solution is fixed at 6.5 wt%. The molar ratio of repeating unit of PVA to PAA is fixed at 1:1
and PEO content is varied. After mixing
the spinning solution is centrifuged at 10000 r/min for 15 min to remove the bubbles. Then the solution is extruded through a spinneret into 2.0 mol/L HCl coagulation bath to form fibers by formation of hydrogen-bonded complex. The nascent fibers are dried in ambient environment for 24 h. The PEO/PVA/PAA fibers with different compositions are characterized by Fourier transform infrared spectroscopy (FTIR)
wide angle X-ray diffraction (XRD)
differential scanning calorimetry (DSC)
scanning electron microscopy (SEM) and mechanical strength tester. The FTIR results demonstrate the formation of hydrogen bonding interactions in fibers. The crystallines of PEO and PVA are inhibited by the hydrogen bonding complexation. Each kind of fibers only shows one
T
g
on the DSC curve
indicating the miscibility of different components. With the increase of PEO content
T
g
of the fibers decrease. The SEM images show that the cross sections of fractured fibers are rough.Tensile testing exhibites that the fiber becomes soft as PEO content increases. The fiber shows obvious yielding behavior when the PEO content is 20%. When the PEO content increases to 60%
the yielding disappears and the elongation increases dramatically to more than 1000% at room temperature with relative humidity of 65%. The elastic recovery test shows the elastic recovery is low (40%) as the PEO content is 20% and the value is enhanced to 90% when PEO content is 60%. The mechiacial properties of fibers show strong dependence on humidity. The fibers will present shape memory effect as humidity changes
and are endowed with memdable behavior in the high humidity environment.
氢键多组分复合物纤维形状记忆可修复
Hydrogen bondMulti-componentComplex fiberShape memoryMendable
Horrocks A R, Anand S C. Handbook of Technical Textiles. Oxford: Woodhead Publishing, 2016. 1-4
Kaminow I P, Li T, Willner A E. Optical Fiber Telecommunications. New York: Academic Press, 2013. 1-5
Karger-Kocsis J, Mahmood H, Pegoretti A. Prog Mater Sci, 2015, 73: 1-43. doi:10.1016/j.pmatsci.2015.02.003http://dx.doi.org/10.1016/j.pmatsci.2015.02.003
Liu Dezhong(刘德中), Li Jiefu(李皆富), Huang Wentao(黄文弢), Yang Shuguang(杨曙光). Acta Polymerica Sinica(高分子学报), 2018, (4): 445-455
Huang W, Liu D, Li J, Zhu L, Yang S. Sci China Technol Sc, 2019, 62(6): 931-944. doi:10.1007/s11431-018-9475-5http://dx.doi.org/10.1007/s11431-018-9475-5
Jeffries R. Bicomponent Fibers. Watford: Merrow Publishing Company Limited, 1971. 1-4
Marcinčin A. Prog Polym Sci, 2002, 27(5): 853-913. doi:10.1016/s0079-6700(02)00002-3http://dx.doi.org/10.1016/s0079-6700(02)00002-3
Jinnai H. Polym J, 2018, 50(12): 1121-1138. doi:10.1038/s41428-018-0103-1http://dx.doi.org/10.1038/s41428-018-0103-1
Lopez-Barron C R, Macosko C W. Langmuir, 2009, 25(16): 9392-9404. doi:10.1021/la803450yhttp://dx.doi.org/10.1021/la803450y
Jinnai H, Koga T, Nishikawa Y, Hashimoto T, Hyde S T. Phys Rev Lett, 1997, 78(11): 2248-2251. doi:10.1103/physrevlett.78.2248http://dx.doi.org/10.1103/physrevlett.78.2248
Michaels A S. Ind Eng Chem, 1965, 57(10): 32-40. doi:10.1021/ie50670a007http://dx.doi.org/10.1021/ie50670a007
Tsuchida E, Abe K. Adv Polym Sci, 1982, 45: 1-119
Jiang M, Li M, Xiang M, Zhou H. Adv Polym Sci, 1999, 146: 121-196. doi:10.1007/3-540-49424-3_3http://dx.doi.org/10.1007/3-540-49424-3_3
Van der Gucht J, Spruijt E, Lemmers M, Stuart M A C. J Colloid Interf Sci, 2011, 361(2): 407-422. doi:10.1016/j.jcis.2011.05.080http://dx.doi.org/10.1016/j.jcis.2011.05.080
Lutz J F O, Lehn J M, Meijer E W, Matyjaszewski K. Nat Rev Mater, 2016, 1(5): 16024. doi:10.1038/natrevmats.2016.24http://dx.doi.org/10.1038/natrevmats.2016.24
Meka V S, Singe M K G, Pichika M R, Nali S R, Kolapaili V R M, Kesharwani P. Drug Discov Today, 2017, 22(11): 1697-1706. doi:10.1016/j.drudis.2017.06.008http://dx.doi.org/10.1016/j.drudis.2017.06.008
Cesteros L C, Isasi J R, Katime I. Macromolecules, 1993, 26(26): 7256-7262. doi:10.1021/ma00078a022http://dx.doi.org/10.1021/ma00078a022
Goh S H, Lai Y H, Wee A T S. Polymer, 2000, 41(17): 6563-6571
Wang J, Cheung M K, Mi Y. Polymer, 2001, 42(5): 2077-2083. doi:10.1016/s0032-3861(00)00502-4http://dx.doi.org/10.1016/s0032-3861(00)00502-4
Coleman M M, Pehlert G J, Yang X, Stallman J B, Painter P C. Polymer, 1996, 37(21): 4753-4761. doi:10.1016/s0032-3861(96)00313-8http://dx.doi.org/10.1016/s0032-3861(96)00313-8
Amaike M, Senoo Y, Yamamoto H. Macromol Rapid Commun, 1998, 19(6): 287-289. doi:10.1002/(sici)1521-3927(19980601)19:6<287::aid-marc287>3.0.co;2-xhttp://dx.doi.org/10.1002/(sici)1521-3927(19980601)19:6<287::aid-marc287>3.0.co;2-x
Wan A C A, Liao I C, Yim E K F, Leong K W. Macromolecules, 2004, 37(18): 7019-7025. doi:10.1021/ma0498868http://dx.doi.org/10.1021/ma0498868
Wan A C A, Leong M F, Toh J K C, Zheng Y, Ying J Y. Adv Healthc Mater, 2012, 1(1): 101-105. doi:10.1002/adhm.201100020http://dx.doi.org/10.1002/adhm.201100020
Leong M F, Toh J K C, Du C, Narayanan K, Lu H F, Lim T C, Wan A C A, Ying J Y. Nat Commun, 2013, 4: 2353. doi:10.1038/ncomms3353http://dx.doi.org/10.1038/ncomms3353
Sæther H V, Holme H K, Maurstad G, Smidsrød O, Stokke B T. Carbohydr Polym, 2008, 74(4): 813-821. doi:10.1016/j.carbpol.2008.04.048http://dx.doi.org/10.1016/j.carbpol.2008.04.048
Wan A C A, Yim E K F, Liao I C, Le Visage C, Leong K W. J Biomed Mater Res A, 2004, 71A(4): 586-595
Wang F, Liu Z, Wang B, Feng L, Liu L, Lv F, Wang Y, Wang S. Angew Chem Int Ed, 2014, 53(2): 424-428. doi:10.1002/anie.201308795http://dx.doi.org/10.1002/anie.201308795
Wan A C A, Tai B C U, Leck K J, Ying J Y. Adv Mater, 2006, 18(5): 641-644. doi:10.1002/adma.200502096http://dx.doi.org/10.1002/adma.200502096
Zhan J, Anirudha S, Zhang Z, Huang L, Elisseeff J H. Biomatter, 2012, 2(4): 202-212. doi:10.4161/biom.22723http://dx.doi.org/10.4161/biom.22723
Ohkawa K, Takahashi Y, Yamada M, Yamamoto H. Macromol Mater Eng, 2001, 286(3): 168-175. doi:10.1002/1439-2054(20010301)286:3<168::aid-mame168>3.0.co;2-7http://dx.doi.org/10.1002/1439-2054(20010301)286:3<168::aid-mame168>3.0.co;2-7
Liao I C, Wan A C A, Yim E K F, Leong K W. J Control Release, 2005, 104(2): 347-358. doi:10.1016/j.jconrel.2005.02.013http://dx.doi.org/10.1016/j.jconrel.2005.02.013
Tai B C, Du C, Gao S, Wan A C, Ying J Y. Biomaterials, 2010, 31(1): 48-57. doi:10.1016/j.biomaterials.2009.09.022http://dx.doi.org/10.1016/j.biomaterials.2009.09.022
Tai B C U, Wan A C A, Ying J Y. Biomaterials, 2010, 31(23): 5927-5935. doi:10.1016/j.biomaterials.2010.04.003http://dx.doi.org/10.1016/j.biomaterials.2010.04.003
Li J, Wang Z, Wen L, Nie J, Yang S, Xu J, Cheng S Z D. ACS Macro Lett, 2016, 5(7): 814-818. doi:10.1021/acsmacrolett.6b00346http://dx.doi.org/10.1021/acsmacrolett.6b00346
Liu D, Zhu L, Huang W, Yue K, Yang S. ACS Macro Lett, 2020, 9(11): 1507-1513. doi:10.1021/acsmacrolett.0c00633http://dx.doi.org/10.1021/acsmacrolett.0c00633
Huang W, Liu D, Zhu L, Yang S. Chinese J Chem, 2020, 38(5): 465-470. doi:10.1002/cjoc.201900496http://dx.doi.org/10.1002/cjoc.201900496
Huang W, Li J, Liu D, Tan S, Zhang P, Zhu L, Yang S. ACS Appl Polym Mater, 2020, 2(6): 2119-2125. doi:10.1021/acsapm.0c00056http://dx.doi.org/10.1021/acsapm.0c00056
Huang W, Zhu L, Liu D, Li J, Yang S. Carbohyd Polym Technol Appl, 2021, 2: 100030. doi:10.1016/j.carpta.2020.100030http://dx.doi.org/10.1016/j.carpta.2020.100030
Nie J, Wang Z L, Li J F, Gong Y, Sun J X, Yang S G. Chinese J Polym Sci, 2017, 35(8): 1001-1008. doi:10.1007/s10118-017-1984-8http://dx.doi.org/10.1007/s10118-017-1984-8
Dong J, Ozaki Y, Nakashima K. Macromolecules, 1997, 30(4): 1111-1117. doi:10.1021/ma960693xhttp://dx.doi.org/10.1021/ma960693x
Venegas-Sanchez J A, Tagaya M, Kobayashi T. Polym J, 2013, 45(12): 1224-1233. doi:10.1038/pj.2013.47http://dx.doi.org/10.1038/pj.2013.47
Thomas J B, Tingsanchali J H, Rosales A M, Creecy C M, Peppas N A. Polymer, 2007, 48(17): 5042-5048. doi:10.1016/j.polymer.2007.06.035http://dx.doi.org/10.1016/j.polymer.2007.06.035
Li Jiefu(李皆富), Yang Shuguang(杨曙光). Acta Polymerica Sinica(高分子学报), 2019, 50(8): 857-862
Su C, Ma S, Liu G, Yang S. Chinese J Polym Sci, 2018, 36(9): 1036-1042. doi:10.1007/s10118-018-2109-8http://dx.doi.org/10.1007/s10118-018-2109-8
Meng Q, Hu J. Compos Part A-Appl S, 2009, 40(11): 1661-1672. doi:10.1016/j.compositesa.2009.08.011http://dx.doi.org/10.1016/j.compositesa.2009.08.011
Wang Y, Li T, Li S, Guo R, Sun J. ACS Appl Mater Interfaces, 2015, 7(24): 13597-13603. doi:10.1021/acsami.5b03179http://dx.doi.org/10.1021/acsami.5b03179
0
Views
66
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution