Endowing the Antifouling and Self-cleaning Properties of Poly(ether sulfone) Oil/Water Separation Membrane by Blending with Amphiphilic Block Copolymer Additive
返回论文页
Research Article|更新时间:2023-12-20
|
Endowing the Antifouling and Self-cleaning Properties of Poly(ether sulfone) Oil/Water Separation Membrane by Blending with Amphiphilic Block Copolymer Additive
Yin Jun,Song Jing-pin,Cai Xin-an,et al.Endowing the Antifouling and Self-cleaning Properties of Poly(ether sulfone) Oil/Water Separation Membrane by Blending with Amphiphilic Block Copolymer Additive[J].ACTA POLYMERICA SINICA,2021,52(10):1368-1378.
Yin Jun,Song Jing-pin,Cai Xin-an,et al.Endowing the Antifouling and Self-cleaning Properties of Poly(ether sulfone) Oil/Water Separation Membrane by Blending with Amphiphilic Block Copolymer Additive[J].ACTA POLYMERICA SINICA,2021,52(10):1368-1378. DOI: 10.11777/j.issn1000-3304.2021.21081.
Endowing the Antifouling and Self-cleaning Properties of Poly(ether sulfone) Oil/Water Separation Membrane by Blending with Amphiphilic Block Copolymer Additive
Oil/water separation is a worldwide challenge because large amounts of oily wastewater are produced in our daily life and many industrial processes. There is a growing tendency to employ ultrafiltration membrane for treating oily wastewater due to its low energy consumption
high operation efficiency and environmentally friendly characteristic.Recently
amphiphilic copolymers were designed as additives to fabricate composite membranes through physical blending modification
which has quickly become a research hotspot due to its simple operation. In this work
a novel amphiphilic block copolymer of poly(ethylene glycol methyl ether) block poly(hexafluorobutyl methacrylate) block poly(glycidyl methacrylate) (mPEG-
b
-PHFBM-
b
-PGMA) was beforehand synthesized
via
reversible addition-fragmentation chain transfer polymerization (RAFT). Then
the PES/mPEG-
b
-PHFBM-
b
-PGMA composite membrane was prepared by the NIPS method. In the membrane formation process
the hydrophobic PGMA segments in mPEG-
b
-PHFBM-
b
-PGMA act as an anchor
which amalgamated with hydrophobic PES molecular. At the same time
the hydrophilic mPEG segments migrated spontaneously to the membrane surface
via
a "free surface segregation" approach
dragging the low surface energy PHFBM segments onto membrane surfaces. In this way
an antifouling and self-cleaning advanced membrane surface was constructed. The pure water flux and oil flux of the PES/PFG5 composite membrane are around 290.25 and 252.89 L·m
-2
·h
-1
respectively. The corresponding values of the PES blank membrane are only 64.10 and 11.09 L·m
-2
·h
-1
respectively. Compared with the unmodified PES membrane
the flux recovery ratio increases from 45.75% to 90.15%
while the permeation flux-decline value decreases from 82.70% to 12.87%
suggesting the excellent anti-fouling and self-cleaning property of the modified PES/PFG5 composite membrane. Furthermore
the mPEG-
b
-PHFBM-
b
-PGMA copolymer exhibits good stability due to the physical intertwisting and hydrophobic interaction between the PGMA and PES
suggesting the good application prospect of the membrane in oil/water separation.
关键词
聚醚砜复合膜油水分离自清洁两亲性嵌段聚合物甲基丙烯酸六氟丁酯
Keywords
PES composite membraneOil/water separationSelf-cleaningAmphiphilic block polymerHexafluorobutyl methacrylate
references
Sarkar D, Datta D, Sen D. Chem Eng Sci, 2011, 66(12): 2554-2567. doi:10.1016/j.ces.2011.02.056http://dx.doi.org/10.1016/j.ces.2011.02.056
Cambiella A, Bentio J M, Pazos C, Coca J. Chem Eng Res Des, 2006, 84: 69-76. doi:10.1205/cherd.05130http://dx.doi.org/10.1205/cherd.05130
Hashmi K A, Hamza H A, Wilson J C. Miner Eng, 2004, 17: 643-649. doi:10.1016/j.mineng.2004.01.019http://dx.doi.org/10.1016/j.mineng.2004.01.019
Chen W J, Su Y lei, Peng J M, Dong Y N, Zhao X T, Jiang Z Y. Adv Funct Mater, 2011, 21 (1): 191-198. doi:10.1002/adfm.201001384http://dx.doi.org/10.1002/adfm.201001384
Yin J, Zhou J C. Desalination, 2015, 365: 46-56. doi:10.1016/j.desal.2015.02.017http://dx.doi.org/10.1016/j.desal.2015.02.017
Chen W J, Su Y lei, Zhang L, Shi Q, Peng J M, Jiang Z Y. J Membr Sci, 2010, 348(1-2): 75-83. doi:10.1016/j.memsci.2009.10.042http://dx.doi.org/10.1016/j.memsci.2009.10.042
Zhang, W B, Zhu Y Z, Liu X, Wang D, Li J Y, Jiang L, Jin J. Angew Chem Int Ed, 2014, 53: 856-860. doi:10.1002/anie.201308183http://dx.doi.org/10.1002/anie.201308183
Kim D, Kang H, Han S. J Mater Chem, 2012, 22(17): 8654-8661. doi:10.1039/c2jm16439fhttp://dx.doi.org/10.1039/c2jm16439f
Mccloskey B D, Ju H, Freeman B D. Ind Eng Chem Res, 2010, 49(1): 366-373. doi:10.1021/ie901197uhttp://dx.doi.org/10.1021/ie901197u
Ju H, Mccloskey B D, Sagle A.C. J Membr Sci, 2008, 307(2): 260-267. doi:10.1016/j.memsci.2007.09.028http://dx.doi.org/10.1016/j.memsci.2007.09.028
Masuelli M A, Grasselli M, Marchese J. J Membr Sci, 2012, 389: 91-99. doi:10.1016/j.memsci.2011.10.019http://dx.doi.org/10.1016/j.memsci.2011.10.019
Ju J, Wang T, Wang Q. Colloid Surface A, 2015, 481: 151-157. doi:10.1016/j.colsurfa.2015.01.041http://dx.doi.org/10.1016/j.colsurfa.2015.01.041
Yan Kaibo(闫凯波), Guo Guibao(郭贵宝), Liu Jinyan(刘金彦), Huang Qiang(黄强), Zhang Jiahan(张嘉汉). Acta Polymerica Sinica(高分子学报), 2016, (5): 659-666
Idris A, Zain N M, Noordin M Y. Desalination, 2007, 207(1-3): 324-339
Marchese J, Ponce M, Ochoa N A, Pradanos P, Palacio L, Hernandez A. J Membr Sci, 2003, 211(1-3): 1-11. doi:10.1016/s0376-7388(02)00260-0http://dx.doi.org/10.1016/s0376-7388(02)00260-0
Yin Jun(殷俊). Novel Polyethersulfone Organic-inorganic Composite Ultrafiltration Membranes Prepared with Modified SiO2 Nanoparticles and Its Application Research(改性SiO2纳米粒子/聚醚砜复合超滤膜的制备及其应用研究). Doctoral Dissertation of Southeast University(东南大学博士学位论文), 2016. doi:10.1016/j.desal.2015.02.017http://dx.doi.org/10.1016/j.desal.2015.02.017