Liposomes delivery drug systems show obvious advantages in the treatment of many diseases. Constructing new types of liposome based drugs is of great importance to develop more efficient novel drug delivery systems. Herein
the present work demonstrated that Au microelectrode was chemically modified with avidin through Au-S bond (Avidin-S-Au microelectrode) and liposomes modified with the biotin (Biotin-liposome) were constructed through molecular assembly. Furthermore
an electrochemical detection device was constructed to recognize liposomes through single nanoparticle collision. Compared with pure liposomes
biotin modified liposome displayed a higher collision frequency and intensity with Avidin-S-Au microelectrode. Importantly
with the increasing concentration of biotin-liposome
the collision frequency increases as well. Taking the single liposome collision to the gold microelectrode into account
one can obtain quantitative information of the liposome size and concentration through the frequency and intensity of single nanoparticle collision. These findings represent an unusual case to achieve high sensitivity detection of individual liposomes with poor electrochemical activity and at very low concentration. The present work creates a simple and effective way to detect the stability of liposomes and their interaction with biomembranes.
Rideau E, Dimova R, Schwille P, Wurm F R, Landfester K. Chem Soc Rev, 2018, 47(23): 8572-8610. doi:10.1039/c8cs00162fhttp://dx.doi.org/10.1039/c8cs00162f
Sun B B, Tao K, Jia Y, Yan X H, Zou Q L, Gazit E, Li J B. Chem Soc Rev, 2019, 48(16): 4387-4400. doi:10.1039/c9cs00085bhttp://dx.doi.org/10.1039/c9cs00085b
Bates F S, Hillmyer M A, Lodge T P, Bates C M, Delaney K T, Fredrickson G H. Science, 2012, 336(6080): 434-440. doi:10.1126/science.1215368http://dx.doi.org/10.1126/science.1215368
Qi W, Duan L, Wang K W, Yan X H, Cui Y, He Q, Li J B. Adv Mater, 2008, 20(3): 601-605. doi:10.1002/adma.200702155http://dx.doi.org/10.1002/adma.200702155
Jia Y, Li J B. Nat Rev Chem, 2019, 3: 361-374. doi:10.1038/s41570-019-0100-8http://dx.doi.org/10.1038/s41570-019-0100-8
Duan L, He Q, Wang K W, Yan X H, Cui Y, Möhwald H, Li J B. Angew Chem Int Ed, 2007, 46(37): 6996-7000. doi:10.1002/anie.200700331http://dx.doi.org/10.1002/anie.200700331
Xu Y Q, Fei J B, Li G L, Yuan T T, Li Y, Wang C L, Li X B, Li J B. Angew Chem Int Ed, 2017, 56(42): 12903-12907. doi:10.1002/anie.201706368http://dx.doi.org/10.1002/anie.201706368
Xu Y Q, Fei J B, Li G L, Yuan T T, Xu X, Wang C L, Li J B. Angew Chem Int Ed, 2018, 57(22): 6532-6535. doi:10.1002/anie.201802555http://dx.doi.org/10.1002/anie.201802555
Xu Y Q, Fei J B, Li G L, Yuan T T, Li J B. ACS Nano, 2017, 11(10): 10175-10183. doi:10.1021/acsnano.7b04747http://dx.doi.org/10.1021/acsnano.7b04747
Xu Y Q, Fei J B, Li G L, Yuan T T, Xu X, Li J B. Angew Chem Int Ed, 2019, 58(17): 5572-5576. doi:10.1002/anie.201813771http://dx.doi.org/10.1002/anie.201813771
Li Y, Fei J B, Li G L, Xie H M, Yang Y, Li J L, Xu Y Q, Sun B B, Xia J R, Fu X Q, Li J B. ACS Nano, 2018, 12(2): 1455-1461. doi:10.1021/acsnano.7b07841http://dx.doi.org/10.1021/acsnano.7b07841
Li Y, Feng X Y, Wang A H, Yang Y, Fei J B, Sun B B, Jia Y, Li J B. Angew Chem Int Ed, 2019, 58(3): 796-800. doi:10.1002/anie.201812582http://dx.doi.org/10.1002/anie.201812582
Li G L, Fei J B, Xu Y Q, Li J B. Adv Funct Mater, 2018, 28(13): 1706557. doi:10.1002/adfm.201706557http://dx.doi.org/10.1002/adfm.201706557
Li G L, Fei J B, Xu Y Q, Sun B B, Li J B. Angew Chem Int Ed, 2019, 58(4): 1110-1114. doi:10.1002/anie.201812552http://dx.doi.org/10.1002/anie.201812552
Xu X, Fei J B, Xu Y Q, Li G L, Dong W G, Xue H M, Li J B. Angew Chem Int Ed, 2021, 60(14): 7695-7698. doi:10.1002/anie.202016253http://dx.doi.org/10.1002/anie.202016253
Ariga K, Jia X F, Song J W, Hill J P, Leong D T, Jia Y, Li J B. Angew Chem Int Ed, 2020, 59(36): 15424-15446. doi:10.1002/anie.202000802http://dx.doi.org/10.1002/anie.202000802
Ariga K, Li J B. Adv Mater, 2016, 28(6): 987-988. doi:10.1002/adma.201505715http://dx.doi.org/10.1002/adma.201505715
Cheng W, Compton R G. ChemElectroChem, 2016, 3(12): 2017-2020. doi:10.1002/celc.201600396http://dx.doi.org/10.1002/celc.201600396
Edwards M A, German S R, Dick J E, Bard A J, White H S. ACS Nano, 2015, 9(12): 12274-12282. doi:10.1021/acsnano.5b05554http://dx.doi.org/10.1021/acsnano.5b05554
Xiao X Y, Fan F R F, Zhou J P, Bard A J. J Am Chem Soc, 2008, 130(49): 16669-16677. doi:10.1021/ja8051393http://dx.doi.org/10.1021/ja8051393
Liu Y, Xu C, Yu P, Chen X W, Wang J H, Mao L Q. ChemElectroChem, 2018, 5(20): 2954-2962. doi:10.1002/celc.201800616http://dx.doi.org/10.1002/celc.201800616
Patrice F T, Qiu K, Ying Y L, Long Y T. Annu Rev Anal Chem, 2019, 12(1): 347-370. doi:10.1146/annurev-anchem-061318-114902http://dx.doi.org/10.1146/annurev-anchem-061318-114902
Nguyen T H T, Lee J, Kim H Y, Nam K M, Kim B K. Biosens Bioelectron, 2020, 151: 111999. doi:10.1016/j.bios.2019.111999http://dx.doi.org/10.1016/j.bios.2019.111999
Lan W J, White H S. ACS Nano, 2012, 6(2): 1757-1765. doi:10.1021/nn2047636http://dx.doi.org/10.1021/nn2047636
Toh H S, Compton R G. Chem Sci, 2015, 6: 5053-5058. doi:10.1039/c5sc01635ehttp://dx.doi.org/10.1039/c5sc01635e
Xu W, Zou G Q, Hou H S, Ji X B. Small, 2019, 15(32): 1804908. doi:10.1002/smll.201804908http://dx.doi.org/10.1002/smll.201804908
Laborda E, Molina A, Batchelor-McAuley C, Compton R G. ChemElectroChem, 2018, 5(3): 410-417. doi:10.1002/celc.201701000http://dx.doi.org/10.1002/celc.201701000
Deng Z J, Elattar R, Maroun F, Renault C. Anal Chem, 2018, 90(21): 12923-12929. doi:10.1021/acs.analchem.8b03550http://dx.doi.org/10.1021/acs.analchem.8b03550
Cussler E L. Diffusion: Mass Transfer in Fluid Systems. Cambridge: Cambridge University Press, 2009. doi:10.1017/cbo9780511805134http://dx.doi.org/10.1017/cbo9780511805134
Bard A J, Faulkner L R, Leddy J, Zoski C G. Electrochemical Methods: Fundamentals and Applications. New York: Wiley, 1980. doi:10.1201/9781315270302http://dx.doi.org/10.1201/9781315270302
Li Junbai(李峻柏),Wang Keqing(王克青),Zhao Jie(赵洁),Fu Meifang(付梅芳). China patent,ZL 201910380258. 1. 2020-06-16
Preparation of ZnS Quantum Dots/Alginate Composite Films Based on Electrodeposition and Their Applications on Detection
Enhancing Stability of Liposome by Synergistic Effect of Polymer Multiple-units
Hydrogen Bond Mechanically Enhanced Cholecalciferol Lipo-Hydrogel for Bone Regeneration
Construction of Linear Supramolecular Polymers on the Basis of Non-covalent Molecular Tweezer/Guest Recognition
Related Author
No data
Related Institution
Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Laboratory of Colloid, Interface and Thermodynamics Institute of Chemistry, Institute of Chemistry, Chinese Academy of Sciences
School of Materials Science and Engineering, Wuhan University of Technology
College of Chemical Engineering, China University of Petroleum (East China)
Institute of Chemistry, Chinese Academy of Sciences
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University