This work reports a nano-sized multicomponent composite of cationic poly(diallyldimethylammonium chloride) incorporating with ionic components of biocompatible block copolymer poly(poly(ethylene glycol) methyl ether methacrylate-
b
-methacrylic acid) (PPBM)
gadolinium-coordinated polyoxometalate cluster K
7
(Gd(H
2
O)
3
P
2
W
17
O
61
) and K
6
(
α
-P
2
W
18
O
62
) at the reduction state
as a polymer-covered theranostic nanoplatform for MRI-guided chemo-photothermal combination tumor therapy. The as-prepared composites PDDA-PPBM-rPOMs with a hydrodynamic diameter of 67 nm show good structural stability and biocompatibility against HeLa cells. The internal electrostatic crosslinking structure and the surplus negative charges of the polymers/polyoxometalates composites facilitated the loading of antitumor drug doxorubicin (DOX). The PDDA-PPBM-rPOMs composites before and after drug loading both possess enhanced MRI efficacy as MRI contrast agents with high longitudinal relaxivities up to about 50 L·mmol
-1
·s
-1
. With the aid of reduced K
6
(
α
-P
2
W
18
O
62
) as photothermal therapy agent
the DOX loaded composites displayed unique photothermal conversion capacity. Meanwhile
the DOX loaded in the composite exhibited significant pH responsive drug release behavior. Cytotoxicity and flow cytometric apoptosis experiments showed that the drug-loaded composite can effectively inhibit tumor cell growth and achieve a photothermal-chemical synergistic therapeutic effect under laser irradiation
which provided a new strategy for the further development of polyoxometalate-based multifunctional composite for the integration of tumor diagnosis and treatment.
关键词
磁共振成像光热-化学联合治疗聚合物多金属氧簇药物释放
Keywords
Magnetic resonance imagingCombined photothermal-chemotherapyPolymerPolyoxometalateDrug release
references
Zhu S J, Tian R, Antaris A L, Chen X Y, Dai H J. Adv Mater, 2019, 31: 1900321
Liu C, Zhang S B, Li J H, Wei J, Müllen K, Yin M Z. Angew Chem Int Ed, 2019, 58: 1638-1642. doi:10.1002/anie.201810541http://dx.doi.org/10.1002/anie.201810541
Feng W, Han X G, Wang R Y, Gao X, Hu P, Yue W W, Chen Y, Shi J L. Adv Mater, 2019, 31: 1805919
Li F F, Li T W, Zhi D B, Xu P P, Wang W S, Hu Y, Zhang Y Y, Wang S Z, Thomas J M, Norman J B, Ding W P, Yan L F, Qiu B S. Biomaterials, 2020, 256: 120219. doi:10.1016/j.biomaterials.2020.120219http://dx.doi.org/10.1016/j.biomaterials.2020.120219
Qi F, Liu R Z. Nanoscale Res Lett, 2019, 14: 67. doi:10.1186/s11671-019-2896-zhttp://dx.doi.org/10.1186/s11671-019-2896-z
Wahsner J, Gale E M, Rodríguez-Rodríguez A, Caravan P. Chem Rev, 2018, 119: 957-1057
Chen Q W, Wen J, Li H J, Xu Y Q, Liu F Y. Biomaterials, 2016, 106: 144-166. doi:10.1016/j.biomaterials.2016.08.022http://dx.doi.org/10.1016/j.biomaterials.2016.08.022
Zhou H, Zeng X D, Li A G, Zhou W Y, Tang L, Hu W B, Fan Q L, Meng X L, Deng H, Duan L, Li Y Q, Deng Z X, Hong X C, Xiao Y L. Nat Commun, 2020, 11: 6183. doi:10.1038/s41467-020-19945-whttp://dx.doi.org/10.1038/s41467-020-19945-w
Lammers T, Aime S, Hennink W E, Storm G, Kiessling F. Acc Chem Res, 2011, 44: 1029-1038. doi:10.1021/ar200019chttp://dx.doi.org/10.1021/ar200019c
Wang F Y K, Xiao J G, Chen S, Sun H, Yang B, Jiang J H, Zhou X, Du J Z. Adv Mater, 2018, 30: 1705674. doi:10.1002/adma.201705674http://dx.doi.org/10.1002/adma.201705674
Rai P, Mallidi S, Zheng X, Rahmanzadeh R, Mi Y, Elrington S, Khurshid A, Hasan T. Adv Drug Delivery Rev, 2010, 62: 1094-1124. doi:10.1016/j.addr.2010.09.002http://dx.doi.org/10.1016/j.addr.2010.09.002
Weissleder R, Pittet M J. Nature, 2008, 452: 580-589. doi:10.1038/nature06917http://dx.doi.org/10.1038/nature06917
Lux J, Sherry A D. Curr Opin Chem Biol, 2018, 45: 121-130. doi:10.1016/j.cbpa.2018.04.006http://dx.doi.org/10.1016/j.cbpa.2018.04.006
Doughty A C V, Hoover A R, Layton E, Murray C K, Howard E W, Chen W R. Materials, 2019, 12: 779. doi:10.3390/ma12050779http://dx.doi.org/10.3390/ma12050779
Zhou Z W, Li Y D, Zhang M H, Li C Z, Yang R X. Adv Funct Mater, 2019, 29: 1904144. doi:10.1002/adfm.201904144http://dx.doi.org/10.1002/adfm.201904144
Yan Yi(闫毅), Zhang Bin(张斌), Li Bao(李豹), Wu Lixin(吴立新). Acta Polymerica Sinica(高分子学报), 2017, (1): 101-111. doi:10.11777/j.issn1000-3304.2017.16245http://dx.doi.org/10.11777/j.issn1000-3304.2017.16245
Duan F X, Liu X T, Qu D, Li B, Wu L X. CCS Chem, 2020, 2: 2676-2687
Kong X P, Wan G F, Li B, Wu L X. J Mater Chem B, 2020, 8: 8189-8206. doi:10.1039/d0tb01375ghttp://dx.doi.org/10.1039/d0tb01375g
Zhang C, Bu W B, Ni D L, Zuo C J, Cheng C, Li Q, Zhang L L, Wang Z, Shi J L. J Am Chem Soc, 2016, 138: 8156-8164. doi:10.1021/jacs.6b03375http://dx.doi.org/10.1021/jacs.6b03375
Yang Z, Fan W P, Tang W, Shen Z Y, Dai Y L, Song J B, Wang Z T, Liu Y, Lin L S, Shan L L, Liu Y J, Jacobson O, Rong P F, Wang W, Chen X Y. Angew Chem Int Ed, 2018, 57: 14101-14105. doi:10.1002/anie.201808074http://dx.doi.org/10.1002/anie.201808074
Yong Y, Zhou L J, Zhang S S, Yan L, Gu Z J, Zhang G J, Zhao Y L. NPG Asia Mater, 2016, 8: e273. doi:10.1038/am.2016.63http://dx.doi.org/10.1038/am.2016.63
Zhang S M, Peng B, Xue P Y, Kong X P, Tang Y, Wu L X, Lin S Y. Soft Matter, 2019, 15: 5375-5379. doi:10.1039/c9sm01059ahttp://dx.doi.org/10.1039/c9sm01059a
Chai W Q, Wang S, Zhao H, Liu G F, Fischer K, Li H L, Wu L X, Schmidt M. Chem Eur J, 2013, 19: 13317-13321. doi:10.1002/chem.201302618http://dx.doi.org/10.1002/chem.201302618
Liao Peilong(廖培龙), Liu Zeyu(刘泽宇), Liu Kaerdun(刘卡尔顿), Ma Pin(马聘), Zhu Zhiyang(朱志扬), Yang Siyu杨思玉, Lü Wenfeng(吕文峰), Yang Yongzhi(杨永智), Huang Jianbin(黄建滨). Acta Phys Chim Sin(物理化学学报), 2020, 36: 1907034
Li N, Zhao, Qi L, Li Z, Luan Y. Prog Polym Sci, 2016, 58: 1-26. doi:10.1016/j.progpolymsci.2015.10.009http://dx.doi.org/10.1016/j.progpolymsci.2015.10.009
Zhou T T, Wan G F, Li B, Wu L X. J Mater Chem B, 2020, 8: 6390-6401. doi:10.1039/d0tb00782jhttp://dx.doi.org/10.1039/d0tb00782j
Zhou T T, Wan G F, Kong X P, Li B, Wu L X. Macromol Rapid Commun, 2020, 41: 2000468. doi:10.1002/marc.202000468http://dx.doi.org/10.1002/marc.202000468
Graham C R, Finke R G. Inorg Chem, 2008, 47: 3679-3686. doi:10.1021/ic702295yhttp://dx.doi.org/10.1021/ic702295y
Lyon D K, Miller W K, Novet T, Domaille P J, Evitt E, Johnson D C, Finke R G. J Am Chem Soc, 2002, 22: 7209-7221. doi:10.1002/chin.199150033http://dx.doi.org/10.1002/chin.199150033
Contant R, Klemperer W G, Yaghi O. Inorg Syn, 2007, 27: 104-111
Luo Q H, Howell R C, Bartis J, Dankova M, Horrocks W D, Rheingold A L, Francesconi L C. Inorg Chem, 2002, 41: 6112-6117. doi:10.1021/ic011187dhttp://dx.doi.org/10.1021/ic011187d
Liu Y L, Ai K L, Liu J H, Deng M, He Y Y, Lu L H. Adv Mater, 2013, 25: 1353-1359. doi:10.1002/adma.201204683http://dx.doi.org/10.1002/adma.201204683
Roper D K, Ahn W, Hoepfner M. J Phys Chem C, 2007, 111: 3636-3641. doi:10.1021/jp064341whttp://dx.doi.org/10.1021/jp064341w
Applications of Transmission Electron Microscopy in Study of Multiscale Structures of Polymers
Molecular Design and Device Performance of Thermally Activated Delayed Fluorescent Polymer Materials
Polymers with Aggregation-induced Emission Characteristics
Preparation of mPEG-Hz-PLA Polymeric Micelles for pH Controlled Drug Delivery
Related Author
No data
Related Institution
Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology
State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology
Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science & Technology
College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology
Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Resto-ration and Reconstruction, The Hong Kong University of Science & Technology