浏览全部资源
扫码关注微信
功能高分子材料教育部重点实验室 南开大学化学学院 天津 300071
Published:20 October 2021,
Published Online:29 July 2021,
Received:16 March 2021,
Revised:08 April 2021,
扫 描 看 全 文
阚斌,万相见,李晨曦等.寡聚物型A-D-A结构高效有机太阳能电池材料与器件[J].高分子学报,2021,52(10):1262-1282.
Kan Bin,Wan Xiang-jian,Li Chen-xi,et al.High-performance A-D-A Structured Oligomer-like Organic Photovoltaic Materials and Devices[J].ACTA POLYMERICA SINICA,2021,52(10):1262-1282.
阚斌,万相见,李晨曦等.寡聚物型A-D-A结构高效有机太阳能电池材料与器件[J].高分子学报,2021,52(10):1262-1282. DOI: 10.11777/j.issn1000-3304.2021.21088.
Kan Bin,Wan Xiang-jian,Li Chen-xi,et al.High-performance A-D-A Structured Oligomer-like Organic Photovoltaic Materials and Devices[J].ACTA POLYMERICA SINICA,2021,52(10):1262-1282. DOI: 10.11777/j.issn1000-3304.2021.21088.
近年来有机太阳能电池发展迅速,活性层材料起到至关重要的作用. 在众多活性层材料中,由于其化学结构确定、能级和吸收易调控以及其特殊的电子云分布等特点,寡聚物型A-D-A结构活性层材料成为领域研究的热点和重点. 本文围绕A-D-A结构寡物聚型小分子光伏材料,首先对基于寡聚噻吩以及苯并[1
2-b:4
5-b']二噻吩的A-D-A给体材料进行系统的分析和讨论,对分子的结构-性能关系进行总结;然后讨论基于芴和苯并[1
2-b:4
5-b']二噻吩的两类A-D-A受体材料;总结了我们基于A-D-A分子叠层器件进展;最后,从能量转换效率、器件稳定性、柔性及大面积器件等方面对有机太阳能电池的发展进行了展望.
In recent years
great progress has been made for organic solar cells (OSCs)
in which the innovation of active layer materials has played the critical role. Among different type photovoltaic materials
acceptor-donor-acceptor (A-D-A) structured oligomer-like small molecules
which possess the advantages of defined chemical structures
easily tunable energy levels and absorptions
and unique distribution of electron cloud
have received great attention in the OSC community. Significant progresses have been made
in which the A-D-A type materials including electron donor and electron acceptor materials play important roles. In this review
we start with the discussion of two representative A-D-A type oligomers like donors based on oligothiophene and benzodithiophene unit. OSCs with PCEs over 10% based on these electron donor materials have been realized with delicate molecular modifications and device optimizations. The relationship between the chemical structures and molecular properties is given. For the A-D-A type molecules
the electron-deficient ending groups (A) impose a clear impact on the lowest unoccupied molecular orbital (LUMO) energy levels
solubility
and the molecular packing. The conjugation length of the electron-donating central units (D) affects the highest occupied molecular orbital (HOMO) energy levels and molecular packing. Besides
side chains attached on the backbone can be used to fine-tune the molecular energy levels as well as molecular packings. All these factors lead to different optical and electrical properties as well as the charge transport properties
and thus the device performances. Then
two series of A-D-A type acceptors based on the central core
fluorene and BDT
have been reviewed. Different strategies are adopted to design and synthesize novel low bandgap acceptors. First
fused ring core based on the fluorene and BDT units are used to enhance and electron-donating properties
which help to up-shift the HOMO levels. Second
ending groups with strong electron withdrawing abilities are introduced to down-shift the LUMO levels. Third
the above two methods are combined to tune the HOMO and LUMO levels simultaneously. With those
novel low bandgap acceptors based on fluorene and BDT with PCE over 15% are demonstrated. Next
recent work on tandem OSCs in our group have been summarized. With continuous innovations of A-D-A materials and device optimizations
a record PCE of 17.36% has been obtained with the guide of semi-empirical model. Last
we propose the future and challenge of OSCs from the perspective of power conversion efficiency
device stability
flexible and large-area device.
有机太阳能电池A-D-A分子能量转换效率叠层器件
Organic solar cellA-D-A moleculePower conversion efficiencyTandem device
Service R F. Science, 2011, 332(6027): 293. doi:10.1126/science.332.6027.293http://dx.doi.org/10.1126/science.332.6027.293
Li G, Zhu R, Yang Y. Nat Photon, 2012, 6(3): 153-161. doi:10.1038/nphoton.2012.11http://dx.doi.org/10.1038/nphoton.2012.11
Men L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip H L, Cao Y, Chen Y. Science, 2018, 361(6407): 1094-1098
Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J. Adv Mater, 2020, 32(19): 1908205. doi:10.1002/adma.201908205http://dx.doi.org/10.1002/adma.201908205
Li S, Zhan L, Jin Y, Zhou G, Lau T K, Qin R, Shi M, Li C Z, Zhu H, Lu X, Zhang F, Chen H. Adv Mater, 2020, 32(24): 2001160. doi:10.1002/adma.202001160http://dx.doi.org/10.1002/adma.202001160
Lin F, Jiang K, Kaminsky W, Zhu Z, Jen A K Y. J Am Chem Soc, 2020, 142(36): 15246-15251. doi:10.1021/jacs.0c07083http://dx.doi.org/10.1021/jacs.0c07083
Lin Y, Firdaus Y, Isikgor F H, Nugraha M I, Yengel E, Harrison G T, Hallani R, El-Labban A, Faber H, Ma C, Zheng X, Subbiah A, Howells C T, Bakr O M, McCulloch I, Wolf S D, Tsetseris L, Anthopoulos T D. ACS Energy Lett, 2020, 5(9): 2935-2944. doi:10.1021/acsenergylett.0c01421http://dx.doi.org/10.1021/acsenergylett.0c01421
Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L. Sci Bull, 2020, 65(4): 272-275. doi:10.1016/j.scib.2020.01.001http://dx.doi.org/10.1016/j.scib.2020.01.001
Liu S, Yuan J, Deng W, Luo M, Xie Y, Liang Q, Zou Y, He Z, Wu H, Cao Y. Nat Photon, 2020, 14(5): 300-305. doi:10.1038/s41566-019-0573-5http://dx.doi.org/10.1038/s41566-019-0573-5
Weng K, Ye L, Zhu L, Xu J, Zhou J, Feng X, Lu G, Tan S, Liu F, Sun Y. Nat Commun, 2020, 11(1): 2855. doi:10.1038/s41467-020-16621-xhttp://dx.doi.org/10.1038/s41467-020-16621-x
Wu J, Li G, Fang J, Guo X, Zhu L, Guo B, Wang Y, Zhang G, Arunagiri L, Liu F, Yan H, Zhang M, Li Y. Nat Commun, 2020, 11(1): 4612. doi:10.1038/s41467-020-18378-9http://dx.doi.org/10.1038/s41467-020-18378-9
Chai G, Chang Y, Zhang J, Xu X, Yu L, Zou X, Li X, Chen Y, Luo S, Liu B, Bai F, Luo Z, Yu H, Liang J, Liu T, Wong K S, Zhou H, Peng Q, Yan H. Energy Environ Sci, 2021, doi:10.1039/D0EE03506Hhttp://dx.doi.org/10.1039/D0EE03506H
Li Y, Lin J D, Che X, Qu Y, Liu F, Liao L-S, Forrest S R. J Am Chem Soc, 2017, 139(47): 17114-17119. doi:10.1021/jacs.7b11278http://dx.doi.org/10.1021/jacs.7b11278
Li Y, Ji C, Qu Y, Huang X, Hou S, Li C Z, Liao L S, Guo L J, Forrest S R. Adv Mater, 2019, 31(40): 1903173. doi:10.1002/adma.201903173http://dx.doi.org/10.1002/adma.201903173
Sun Y, Chang M, Meng L, Wan X, Gao H, Zhang Y, Zhao K, Sun Z, Li C, Liu S, Wang H, Liang J, Chen Y. Nat Electron, 2019, 2(11): 513-520. doi:10.1038/s41928-019-0315-1http://dx.doi.org/10.1038/s41928-019-0315-1
Jeong S, Park B, Hong S, Kim S, Kim J, Kwon S, Lee J-H, Lee M S, Park J C, Kang H, Lee K. ACS Appl Mater Interfaces, 2020, 12(37): 41877-41885. doi:10.1021/acsami.0c12190http://dx.doi.org/10.1021/acsami.0c12190
Li X, Xia R, Yan K, Ren J, Yip H-L, Li C Z, Chen H. ACS Energy Lett, 2020, 5(10): 3115-3123. doi:10.1021/acsenergylett.0c01554http://dx.doi.org/10.1021/acsenergylett.0c01554
Park S, Kim T, Yoon S, Koh C W, Woo H Y, Son H J. Adv Mater, 2020, 32(51): 2002217. doi:10.1002/adma.202002217http://dx.doi.org/10.1002/adma.202002217
Park S H, Park S, Kurniawan D, Son J G, Noh J H, Ahn H, Son H J. Chem Mater, 2020, 32(8): 3469-3479. doi:10.1021/acs.chemmater.9b05399http://dx.doi.org/10.1021/acs.chemmater.9b05399
Qin F, Wang W, Sun L, Jiang X, Hu L, Xiong S, Liu T, Dong X, Li J, Jiang Y, Hou J, Fukuda K, Someya T, Zhou Y. Nat Commun, 2020, 11(1): 4508. doi:10.1038/s41467-020-18373-0http://dx.doi.org/10.1038/s41467-020-18373-0
Qin J, Lan L, Chen S, Huang F, Shi H, Chen W, Xia H, Sun K, Yang C. Adv Funct Mater, 2020, 30(36): 2002529. doi:10.1002/adfm.202002529http://dx.doi.org/10.1002/adfm.202002529
Wang D, Qin R, Zhou G, Li X, Xia R, Li Y, Zhan L, Zhu H, Lu X, Yip H L, Chen H, Li C Z. Adv Mater, 2020, 32(32): 2001621. doi:10.1002/adma.202001621http://dx.doi.org/10.1002/adma.202001621
Nelson J. Mater Today, 2011, 14(10): 462-470. doi:10.1016/s1369-7021(11)70210-3http://dx.doi.org/10.1016/s1369-7021(11)70210-3
Dou L, You J, Hong Z, Xu Z, Li G, Street R A, Yang Y. Adv Mater, 2013, 25(46): 6642-6671. doi:10.1002/adma.201302563http://dx.doi.org/10.1002/adma.201302563
Proctor C M, Kuik M, Nguyen T Q. Prog Polym Sci, 2013, 38(12): 1941-1960. doi:10.1016/j.progpolymsci.2013.08.008http://dx.doi.org/10.1016/j.progpolymsci.2013.08.008
Inganäs O. Adv Mater, 2018, 30(35): 1800388. doi:10.1002/adma.201800388http://dx.doi.org/10.1002/adma.201800388
Tong Y, Xiao Z, Du X, Zuo C, Li Y, Lv M, Yuan Y, Yi C, Hao F, Hua Y, Lei T, Lin Q, Sun K, Zhao D, Duan C, Shao X, Li W, Yip H L, Xiao Z, Zhang B, Bian Q, Cheng Y, Liu S, Cheng M, Jin Z, Yang S, Ding L. Sci China Chem, 2020, 63(6): 758-765. doi:10.1007/s11426-020-9726-0http://dx.doi.org/10.1007/s11426-020-9726-0
Liang Y, Wu Y, Feng D, Tsai S T, Son H J, Li G, Yu L. J Am Chem Soc, 2009, 131(1): 56-57. doi:10.1021/ja808373phttp://dx.doi.org/10.1021/ja808373p
Liang Y, Feng D, Wu Y, Tsai S T, Li G, Ray C, Yu L. J Am Chem Soc, 2009, 131(22): 7792-7799. doi:10.1021/ja901545qhttp://dx.doi.org/10.1021/ja901545q
Zhou H, Yang L, You W. Macromolecules, 2012, 45(2): 607-632. doi:10.1021/ma201648thttp://dx.doi.org/10.1021/ma201648t
Liao S H, Jhuo H J, Cheng Y S, Chen S A. Adv Mater, 2013, 25(34): 4766-4771. doi:10.1002/adma.201301476http://dx.doi.org/10.1002/adma.201301476
Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nat Commun, 2014, 5(1): 5293. doi:10.1038/ncomms6293http://dx.doi.org/10.1038/ncomms6293
Lu L, Yu L. Adv Mater, 2014, 26(26): 4413-4430. doi:10.1002/adma.201400384http://dx.doi.org/10.1002/adma.201400384
He Z, Xiao B, Liu F, Wu H, Yang Y, Xiao S, Wang C, Russell T P, Cao Y. Nat Photon, 2015, 9(3): 174-179. doi:10.1038/nphoton.2015.6http://dx.doi.org/10.1038/nphoton.2015.6
Chen Y, Wan X, Long G. Acc Chem Res, 2013, 46(11): 2645-2655. doi:10.1021/ar400088chttp://dx.doi.org/10.1021/ar400088c
Lin Y, Wang J, Zhang Z-G, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27(7): 1170-1174. doi:10.1002/adma.201404317http://dx.doi.org/10.1002/adma.201404317
Lin Y, He Q, Zhao F, Huo L, Mai J, Lu X, Su C J, Li T, Wang J, Zhu J, Sun Y, Wang C, Zhan X. J Am Chem Soc, 2016, 138(9): 2973-2976. doi:10.1021/jacs.6b00853http://dx.doi.org/10.1021/jacs.6b00853
Hou J, Inganas O, Friend R H, Gao F. Nat Mater, 2018, 17(2): 119-128. doi:10.1038/nmat5063http://dx.doi.org/10.1038/nmat5063
Yan C, Barlow S, Wang Z, Yan H, Jen A K Y, Marder S R, Zhan X. Nat Rev Mater, 2018, 3(3): 18003. doi:10.1038/natrevmats.2018.3http://dx.doi.org/10.1038/natrevmats.2018.3
Zhou Z, Xu S, Song J, Jin Y, Yue Q, Qian Y, Liu F, Zhang F, Zhu X. Nat Energy, 2018, 3(11): 952-959. doi:10.1038/s41560-018-0234-9http://dx.doi.org/10.1038/s41560-018-0234-9
Yuan J, Zhang Y, Zhou L, Zhang G, Yip H L, Lau T K, Lu X, Zhu C, Peng H, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3(4): 1140-1151. doi:10.1016/j.joule.2019.01.004http://dx.doi.org/10.1016/j.joule.2019.01.004
Li S, Li C Z, Shi M, Chen H. ACS Energy Lett, 2020, 5(5): 1554-1567. doi:10.1021/acsenergylett.0c00537http://dx.doi.org/10.1021/acsenergylett.0c00537
Ostroverkhova O. Chem Rev, 2016, 116(22): 13279-13412. doi:10.1021/acs.chemrev.6b00127http://dx.doi.org/10.1021/acs.chemrev.6b00127
Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J. Adv Mater, 2016, 28(23): 4734-4739. doi:10.1002/adma.201600281http://dx.doi.org/10.1002/adma.201600281
Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139(21): 7148-7151. doi:10.1021/jacs.7b02677http://dx.doi.org/10.1021/jacs.7b02677
Di Carlo Rasi D, Janssen R A J. Adv Mater, 2019, 31(10): 1806499. doi:10.1002/adma.201806499http://dx.doi.org/10.1002/adma.201806499
Fu H, Wang Z, Sun Y. Angew Chem Int Ed, 2019, 58(14): 4442-4453. doi:10.1002/anie.201806291http://dx.doi.org/10.1002/anie.201806291
Gurney R S, Lidzey D G, Wang T. Rep Prog Phys, 2019, 82(3): 036601. doi:10.1088/1361-6633/ab0530http://dx.doi.org/10.1088/1361-6633/ab0530
Peumans P, Yakimov A, Forrest S R. J Appl Phys, 2003, 93(7): 3693-3723. doi:10.1063/1.1534621http://dx.doi.org/10.1063/1.1534621
Schulze K, Uhrich C, Schüppel R, Leo K, Pfeiffer M, Brier E, Reinold E, Bäuerle P. Adv Mater, 2006, 18(21): 2872-2875. doi:10.1002/adma.200600658http://dx.doi.org/10.1002/adma.200600658
Wan X, Li C, Zhang M, Chen Y. Chem Soc Rev, 2020, 49(9): 2828-2842. doi:10.1039/d0cs00084ahttp://dx.doi.org/10.1039/d0cs00084a
Mishra A, Bäuerle P. Angew Chem Int Ed, 2012, 51(9): 2020-2067. doi:10.1002/anie.201102326http://dx.doi.org/10.1002/anie.201102326
Roncali J, Leriche P, Blanchard P. Adv Mater, 2014, 26(23): 3821-3838. doi:10.1002/adma.201305999http://dx.doi.org/10.1002/adma.201305999
Liu Y, Zhou J, Wan X, Chen Y. Tetrahedron, 2009, 65(27): 5209-5215. doi:10.1016/j.tet.2009.04.089http://dx.doi.org/10.1016/j.tet.2009.04.089
Yin B, Yang L, Liu Y, Chen Y, Qi Q, Zhang F, Yin S. Appl Phys Lett, 2010, 97(2): 023303. doi:10.1063/1.3460911http://dx.doi.org/10.1063/1.3460911
He G, Li Z, Wan X, Zhou J, Long G, Zhang S, Zhang M, Chen Y. J Mater Chem A, 2013, 1(5): 1801-1809. doi:10.1039/c2ta00496hhttp://dx.doi.org/10.1039/c2ta00496h
Zhang H, Yang X, Qiu N, Ni W, Zhang Q, Li M, Kan B, Wan X, Li C, Chen Y. Org Electron, 2016, 33: 71-77. doi:10.1016/j.orgel.2016.03.009http://dx.doi.org/10.1016/j.orgel.2016.03.009
Liu Y, Wan X, Wang F, Zhou J, Long G, Tian J, You J, Yang Y, Chen Y. Adv Energy Mater, 2011, 1(5): 771-775. doi:10.1002/aenm.201100230http://dx.doi.org/10.1002/aenm.201100230
Li Z, He G, Wan X, Liu Y, Zhou J, Long G, Zuo Y, Zhang M, Chen Y. Adv Energy Mater, 2012, 2(1): 74-77. doi:10.1002/aenm.201100572http://dx.doi.org/10.1002/aenm.201100572
Zhang Q, Kan B, Liu F, Long G, Wan X, Chen X, Zuo Y, Ni W, Zhang H, Li M, Hu Z, Huang F, Cao Y, Liang Z, Zhang M, Russell T P, Chen Y. Nat Photon, 2015, 9(1): 35-41. doi:10.1038/nphoton.2014.269http://dx.doi.org/10.1038/nphoton.2014.269
Kan B, Li M, Zhang Q, Liu F, Wan X, Wang Y, Ni W, Long G, Yang X, Feng H, Zuo Y, Zhang M, Huang F, Cao Y, Russell T P, Chen Y. J Am Chem Soc, 2015, 137(11): 3886-3893. doi:10.1021/jacs.5b00305http://dx.doi.org/10.1021/jacs.5b00305
Zhang Q, Wang Y, Kan B, Wan X, Liu F, Ni W, Feng H, Russell T P, Chen Y. Chem Commun, 2015, 51(83): 15268-15271. doi:10.1039/c5cc06009ehttp://dx.doi.org/10.1039/c5cc06009e
Wang Y, Kan B, Ke X, Liu F, Wan X, Zhang H, Li C, Chen Y. Solar RRL, 2018, 2(2): 1700179. doi:10.1002/solr.201700179http://dx.doi.org/10.1002/solr.201700179
Kan B, Zhang Q, Wan X, Ke X, Wang Y, Feng H, Zhang M, Chen Y. Org Electron, 2016, 38: 172-179. doi:10.1016/j.orgel.2016.08.014http://dx.doi.org/10.1016/j.orgel.2016.08.014
Zuo Y, Zhang Q, Wan X, Li M, Zhang H, Li C, Chen Y. Org Electron, 2015, 19: 98-104. doi:10.1016/j.orgel.2015.01.035http://dx.doi.org/10.1016/j.orgel.2015.01.035
Wang Y, Wang Y, Kan B, Ke X, Wan X, Li C, Chen Y. Adv Energy Mater, 2018, 8(32): 1802021. doi:10.1002/aenm.201802021http://dx.doi.org/10.1002/aenm.201802021
Ye L, Zhang S, Huo L, Zhang M, Hou J. Acc Chem Res, 2014, 47(5): 1595-1603. doi:10.1021/ar5000743http://dx.doi.org/10.1021/ar5000743
Li M, Ni W, Wan X, Zhang Q, Kan B, Chen Y. J Mater Chem A, 2015, 3(9): 4765-4776. doi:10.1039/c4ta06452fhttp://dx.doi.org/10.1039/c4ta06452f
Liu Y, Wan X, Wang F, Zhou J, Long G, Tian J, Chen Y. Adv Mater, 2011, 23(45): 5387-5391. doi:10.1002/adma.201102790http://dx.doi.org/10.1002/adma.201102790
Zhou J, Wan X, Liu Y, Zuo Y, Li Z, He G, Long G, Ni W, Li C, Su X, Chen Y. J Am Chem Soc, 2012, 134(39): 16345-16351. doi:10.1021/ja306865zhttp://dx.doi.org/10.1021/ja306865z
Ni W, Li M, Wan X, Feng H, Kan B, Zuo Y, Chen Y. RSC Adv, 2014, 4(60): 31977-31980. doi:10.1039/c4ra04862hhttp://dx.doi.org/10.1039/c4ra04862h
Kan B, Zhang Q, Li M, Wan X, Ni W, Long G, Wang Y, Yang X, Feng H, Chen Y. J Am Chem Soc, 2014, 136(44): 15529-15532. doi:10.1021/ja509703khttp://dx.doi.org/10.1021/ja509703k
Guo Y-Q, Wang Y, Song L C, Liu F, Wan X, Zhang H, Chen Y. Chem Mater, 2017, 29(8): 3694-3703. doi:10.1021/acs.chemmater.7b00642http://dx.doi.org/10.1021/acs.chemmater.7b00642
Zhang Q, Kan B, Wan X, Zhang H, Liu F, Li M, Yang X, Wang Y, Ni W, Russell T P, Shen Y, Chen Y. J Mater Chem A, 2015, 3(44): 22274-22279. doi:10.1039/c5ta06627ahttp://dx.doi.org/10.1039/c5ta06627a
Zhou J, Zuo Y, Wan X, Long G, Zhang Q, Ni W, Liu Y, Li Z, He G, Li C, Kan B, Li M, Chen Y. J Am Chem Soc, 2013, 135(23): 8484-8487. doi:10.1021/ja403318yhttp://dx.doi.org/10.1021/ja403318y
Kan B, Zhang Q, Liu F, Wan X, Wang Y, Ni W, Yang X, Zhang M, Zhang H, Russell T P, Chen Y. Chem Mater, 2015, 27(24): 8414-8423. doi:10.1021/acs.chemmater.5b03889http://dx.doi.org/10.1021/acs.chemmater.5b03889
Li M, Liu F, Wan X, Ni W, Kan B, Feng H, Zhang Q, Yang X, Wang Y, Zhang Y, Shen Y, Russell T P, Chen Y. Adv Mater, 2015, 27(40): 6296-6302. doi:10.1002/adma.201502645http://dx.doi.org/10.1002/adma.201502645
Wang Y, Zhang Q, Liu F, Wan X, Kan B, Feng H, Yang X, Russell T P, Chen Y. Org Electron, 2016, 28: 263-268. doi:10.1016/j.orgel.2015.10.006http://dx.doi.org/10.1016/j.orgel.2015.10.006
Wang Z, Xu X, Li Z, Feng K, Li K, Li Y, Peng Q. Adv Electron Mater, 2016, 2(6): 1600061. doi:10.1002/aelm.201600061http://dx.doi.org/10.1002/aelm.201600061
Ji Z, Xu X, Zhang G, Li Y, Peng Q. Nano Energy, 2017, 40: 214-223. doi:10.1016/j.nanoen.2017.08.027http://dx.doi.org/10.1016/j.nanoen.2017.08.027
Deng D, Zhang Y, Zhang J, Wang Z, Zhu L, Fang J, Xia B, Wang Z, Lu K, Ma W, Wei Z. Nat Commun, 2016, 7(1): 13740. doi:10.1038/ncomms13740http://dx.doi.org/10.1038/ncomms13740
Kan B, Kan Y, Zuo L, Shi X, Gao K. Infomat, 2021, 3(2): 175-200. doi:10.1002/inf2.12163http://dx.doi.org/10.1002/inf2.12163
Gao K, Li L, Lai T, Xiao L, Huang Y, Huang F, Peng J, Cao Y, Liu F, Russell T P, Janssen R A J, Peng X. J Am Chem Soc, 2015, 137(23): 7282-7285. doi:10.1021/jacs.5b03740http://dx.doi.org/10.1021/jacs.5b03740
Gao K, Miao J, Xiao L, Deng W, Kan Y, Liang T, Wang C, Huang F, Peng J, Cao Y, Liu F, Russell T P, Wu H, Peng X. Adv Mater, 2016, 28(23): 4727-4733. doi:10.1002/adma.201505645http://dx.doi.org/10.1002/adma.201505645
Gao K, Kan Y, Chen X, Liu F, Kan B, Nian L, Wan X, Chen Y, Peng X, Russell T P, Cao Y, K-YJen A. Adv Mater, 2020, 32(32): 1906129. doi:10.1002/adma.201906129http://dx.doi.org/10.1002/adma.201906129
Fernández-Lázaro F, Zink-Lorre N, Sastre-Santos Á. J Mater Chem A, 2016, 4(24): 9336-9346. doi:10.1039/c6ta02045chttp://dx.doi.org/10.1039/c6ta02045c
Chen W, Zhang Q. J Mater Chem C, 2017, 5(6): 1275-1302. doi:10.1039/c6tc05066bhttp://dx.doi.org/10.1039/c6tc05066b
Zhang G, Zhao J, Chow P C Y, Jiang K, Zhang J, Zhu Z, Zhang J, Huang F, Yan H. Chem Rev, 2018, 118(7): 3447-3507. doi:10.1021/acs.chemrev.7b00535http://dx.doi.org/10.1021/acs.chemrev.7b00535
Dai S, Zhao F, Zhang Q, Lau T K, Li T, Liu K, Ling Q, Wang C, Lu X, You W, Zhan X. J Am Chem Soc, 2017, 139(3): 1336-1343. doi:10.1021/jacs.6b12755http://dx.doi.org/10.1021/jacs.6b12755
Wei Q, Liu W, Leclerc M, Yuan J, Chen H, Zou Y. Sci China Chem, 2020, 63(10): 1352-1366. doi:10.1007/s11426-020-9799-4http://dx.doi.org/10.1007/s11426-020-9799-4
Zhang M, Zhu L, Zhou G, Hao T, Qiu C, Zhao Z, Hu Q, Larson B W, Zhu H, Ma Z, Tang Z, Feng W, Zhang Y, Russell T P, Liu F. Nat Commun, 2021, 12(1): 309. doi:10.1038/s41467-020-20580-8http://dx.doi.org/10.1038/s41467-020-20580-8
Huang J, Tang H, Yan C, Li G. Cell Rep Phys Sci, 2021, 2(1): 100292. doi:10.1016/j.xcrp.2020.100292http://dx.doi.org/10.1016/j.xcrp.2020.100292
Li M, Liu Y, Ni W, Liu F, Feng H, Zhang Y, Liu T, Zhang H, Wan X, Kan B, Zhang Q, Russell T P, Chen Y. J Mater Chem A, 2016, 4(27): 10409-10413. doi:10.1039/c6ta04358ehttp://dx.doi.org/10.1039/c6ta04358e
Qiu N, Zhang H, Wan X, Li C, Ke X, Feng H, Kan B, Zhang H, Zhang Q, Lu Y, Chen Y. Adv Mater, 2017, 29(6): 1604964. doi:10.1002/adma.201604964http://dx.doi.org/10.1002/adma.201604964
Zhang Y, Kan B, Sun Y, Wang Y, Xia R, Ke X, Yi Y Q Q, Li C, Yip H L, Wan X, Cao Y, Chen Y. Adv Mater, 2018, 30(18): 1707508. doi:10.1002/adma.201707508http://dx.doi.org/10.1002/adma.201707508
Wang Y, Zhang Y, Qiu N, Feng H, Gao H, Kan B, Ma Y, Li C, Wan X, Chen Y. Adv Energy Mater, 2018, 8(15): 1702870. doi:10.1002/aenm.201702870http://dx.doi.org/10.1002/aenm.201702870
Ke X, Meng L, Wan X, Li M, Sun Y, Guo Z, Wu S, Zhang H, Li C, Chen Y. J Mater Chem A, 2020, 8(19): 9726-9732. doi:10.1039/d0ta03087bhttp://dx.doi.org/10.1039/d0ta03087b
Zhang Y, Feng H, Meng L, Wang Y, Chang M, Li S, Guo Z, Li C, Zheng N, Xie Z, Wan X, Chen Y. Adv Energy Mater, 2019, 9(45): 1902688. doi:10.1002/aenm.201902688http://dx.doi.org/10.1002/aenm.201902688
Feng H, Qiu N, Wang X, Wang Y, Kan B, Wan X, Zhang M, Xia A, Li C, Liu F, Zhang H, Chen Y. Chem Mater, 2017, 29(18): 7908-7917. doi:10.1021/acs.chemmater.7b02811http://dx.doi.org/10.1021/acs.chemmater.7b02811
Ke X, Meng L, Wan X, Sun Y, Guo Z, Wu S, Zhang H, Li C, Chen Y. Mater Chem Front, 2020, 4(12): 3594-3601. doi:10.1039/d0qm00287ahttp://dx.doi.org/10.1039/d0qm00287a
Kan B, Feng H, Wan X, Liu F, Ke X, Wang Y, Wang Y, Zhang H, Li C, Hou J, Chen Y. J Am Chem Soc, 2017, 139(13): 4929-4934. doi:10.1021/jacs.7b01170http://dx.doi.org/10.1021/jacs.7b01170
Kan B, Zhang J, Liu F, Wan X, Li C, Ke X, Wang Y, Feng H, Zhang Y, Long G, Friend R H, Bakulin A A, Chen Y. Adv Mater, 2018, 30(3): 1704904. doi:10.1002/adma.201704904http://dx.doi.org/10.1002/adma.201704904
Kan B, Yi Y-Q-Q, Wan X, Feng H, Ke X, Wang Y, Li C, Chen Y. Adv Energy Mater, 2018, 8(22): 1800424. doi:10.1002/aenm.201800424http://dx.doi.org/10.1002/aenm.201800424
Kan B, Feng H, Yao H, Chang M, Wan X, Li C, Hou J, Chen Y. Sci China Chem, 2018, 61(10): 1307-1313. doi:10.1007/s11426-018-9334-9http://dx.doi.org/10.1007/s11426-018-9334-9
Zhang X, Ding Y, Feng H, Gao H, Ke X, Zhang H, Li C, Wan X, Chen Y. Sci China Chem, 2020, 63(12): 1799-1806. doi:10.1007/s11426-020-9820-2http://dx.doi.org/10.1007/s11426-020-9820-2
Ma Y, Cai D, Wan S, Wang P, Wang J, Zheng Q. Angew Chem Int Ed, 2020, 59(48): 21627-21633. doi:10.1002/anie.202007907http://dx.doi.org/10.1002/anie.202007907
Ma Y, Cai D, Wan S, Yin P, Wang P, Lin W, Zheng Q. Nat Sci Rev, 2020, 7(12): 1886-1895. doi:10.1093/nsr/nwaa189http://dx.doi.org/10.1093/nsr/nwaa189
Ma Y, Zhang M, Wan S, Yin P, Wang P, Cai D, Liu F, Zheng Q. Joule, 2021, 5(1): 197-209. doi:10.1016/j.joule.2020.11.006http://dx.doi.org/10.1016/j.joule.2020.11.006
Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J. Science, 2007, 317(5835): 222-225. doi:10.1126/science.1141711http://dx.doi.org/10.1126/science.1141711
Ameri T, Li N, Brabec C J. Energy Environ Sci, 2013, 6(8): 2390-2413. doi:10.1039/c3ee40388bhttp://dx.doi.org/10.1039/c3ee40388b
You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C C, Gao J, Li G, Yang Y. Nat Commun, 2013, 4(1): 1446. doi:10.1038/ncomms2411http://dx.doi.org/10.1038/ncomms2411
Yusoff A R b M, Kim D, Kim H P, Shneider F K, da Silva W J, Jang J. Energy Environ Sci, 2015, 8(1): 303-316. doi:10.1039/c4ee03048fhttp://dx.doi.org/10.1039/c4ee03048f
Zhou H, Zhang Y, Mai C K, Collins S D, Bazan G C, Nguyen T Q, Heeger A J. Adv Mater, 2015, 27(10): 1767-1773. doi:10.1002/adma.201404220http://dx.doi.org/10.1002/adma.201404220
Cui Y, Yao H, Gao B, Qin Y, Zhang S, Yang B, He C, Xu B, Hou J. J Am Chem Soc, 2017, 139(21): 7302-7309. doi:10.1021/jacs.7b01493http://dx.doi.org/10.1021/jacs.7b01493
Cheng P, Li G, Zhan X, Yang Y. Nat Photon, 2018, 12(3): 131-142. doi:10.1038/s41566-018-0104-9http://dx.doi.org/10.1038/s41566-018-0104-9
Zhang Q, Wan X, Liu F, Kan B, Li M, Feng H, Zhang H, Russell T P, Chen Y. Adv Mater, 2016, 28(32): 7008-7012. doi:10.1002/adma.201601435http://dx.doi.org/10.1002/adma.201601435
Li M, Gao K, Wan X, Zhang Q, Kan B, Xia R, Liu F, Yang X, Feng H, Ni W, Wang Y, Peng J, Zhang H, Liang Z, Yip H L, Peng X, Cao Y, Chen Y. Nat Photon, 2016, 11(2): 85-90. doi:10.1038/nphoton.2016.240http://dx.doi.org/10.1038/nphoton.2016.240
Xiao Z, Jia X, Ding L. Sci Bull, 2017, 62(23): 1562-1564. doi:10.1016/j.scib.2017.11.003http://dx.doi.org/10.1016/j.scib.2017.11.003
Du X, Heumueller T, Gruber W, Classen A, Unruh T, Li N, Brabec C J. Joule, 2019, 3(1): 215-226. doi:10.1016/j.joule.2018.09.001http://dx.doi.org/10.1016/j.joule.2018.09.001
Xu X, Xiao J, Zhang G, Wei L, Jiao X, Yip H L, Cao Y. Sci Bull, 2020, 65(3): 208-216. doi:10.1016/j.scib.2019.10.019http://dx.doi.org/10.1016/j.scib.2019.10.019
Chang M, Meng L, Wang Y, Ke X, Yi Y Q Q, Zheng N, Zheng W, Xie Z, Zhang M, Yi Y, Zhang H, Wan X, Li C, Chen Y. Chem Mater, 2020, 32(6): 2593-2604. doi:10.1021/acs.chemmater.0c00097http://dx.doi.org/10.1021/acs.chemmater.0c00097
0
Views
104
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution