Deng Pan,Cheng Chen,Zhang Ling-zhi.Polyethyleneimine/Polyacrylamide Composite as Cross-linkable Aqueous Binder for Si/C Anodes of Lithium-ion Batteries[J].ACTA POLYMERICA SINICA,2021,52(11):1473-1480.
Deng Pan,Cheng Chen,Zhang Ling-zhi.Polyethyleneimine/Polyacrylamide Composite as Cross-linkable Aqueous Binder for Si/C Anodes of Lithium-ion Batteries[J].ACTA POLYMERICA SINICA,2021,52(11):1473-1480. DOI: 10.11777/j.issn1000-3304.2021.21095.
Polyethyleneimine/Polyacrylamide Composite as Cross-linkable Aqueous Binder for Si/C Anodes of Lithium-ion Batteries
High-capacity Si/C anodes face the huge volume change during Li insertion/extraction process
which consequently leads to the pulverization of the silicon and eventually capacity fading and poor cycle life of lithium-ion batteries. To tackle this issue
new binder materials is extensively explored to improve the cycle life by effectively alleviating the huge volume change
and thus improving the cycling life. In this work
a new cross-linkable aqueous composite binder based on branched polyethyleneimine and polyacrylamide (BPEI-PAM) for Si/C anodes is reported. TGA
DSC
FTIR measurements are performed to characterize the crosslinking reaction of BPEI and PAM and their thermal properties. The electrochemical performances of the Si anodes with BPEI-PAM new binder are investigated and compared with the conventional aqueous binder of carboxymethyl cellulose/styrene butadiene rubber (CMC/SBR). By using the optimized BPEI-PAM binder (1:6 in molar ratio)
the Si/C electrode exhibits the higher peel strength of 0.82 N/cm as compared with 0.32 N/cm for CMC/SBR. Even at a high loading of 3.0 mg/cm
2
the Si/C electrode with BPEI-PAM can still maintain 81.3% capacity retention after 200 cycles
better than 76.1% for the electrode with CMC/SBR. This improved electrochemical performances can be attributed to the higher adhesion property of BPEI-PAM binder after crosslinking during the process of Si/C electrodes.
关键词
锂离子电池Si/C负极水性粘结剂
Keywords
Lithium-ion batterySi/C anodeAqueous binder
references
Kang B, Ceder G. Nature, 2009, 458: 190-193. doi:10.1038/nature07853http://dx.doi.org/10.1038/nature07853
Armand M, Tarascon J M. Nature, 2008, 451: 652-657. doi:10.1038/451652ahttp://dx.doi.org/10.1038/451652a
Liang B, Liu Y P, Xu Y H, J. Power Sources, 2014, 267: 469-490. doi:10.1016/j.jpowsour.2014.05.096http://dx.doi.org/10.1016/j.jpowsour.2014.05.096
Tian H J, Xin F X, Wang X L, He W, Han W QJ. Materiomics, 2015, 1: 153-169. doi:10.1016/j.jmat.2015.03.004http://dx.doi.org/10.1016/j.jmat.2015.03.004
Kim H, Seo M, Park M H, Cho J. Angew Chem, 2010, 49: 2146-2149. doi:10.1002/anie.200906287http://dx.doi.org/10.1002/anie.200906287
Yue L, Wang S Q, Zhao X Y, Zhang L Z. J Mater Chem, 2012, 22: 1094-1099. doi:10.1039/c1jm14568ahttp://dx.doi.org/10.1039/c1jm14568a
Zhao X Y, Niketic S, Yim C H, Zhou J, Wang J, Abu-Lebdeh Y. ACS Omega, 2018, 3: 11684-11690. doi:10.1021/acsomega.8b01388http://dx.doi.org/10.1021/acsomega.8b01388
Hochgatterer N S, Schweiger M R, Koller S, Raimann P R, Wöhrle T, Wurm C, Winter M. Electrochem Solid ST, 2008, 11: A76-A80. doi:10.1149/1.2888173http://dx.doi.org/10.1149/1.2888173
Liu J, Zhang Q, Wu Z Y, Wu J H, Li J T, Huang L, Sun S G. Chem Commun, 2014, 50: 6386-6389. doi:10.1039/c4cc00081ahttp://dx.doi.org/10.1039/c4cc00081a
Hu B, Shkrob I A, Zhang S, Zhang L H, Zhang J J, Li Y, Liao C, Zhang Z C, Lu W Q, Zhang L. J Power Sources, 2018, 378: 671-676. doi:10.1016/j.jpowsour.2017.12.068http://dx.doi.org/10.1016/j.jpowsour.2017.12.068
Hays K A, Ruther R E, Kukay A J, Cao P F, Saitob T, Wood III D L, Lia J L. J Power Sources, 2018, 384: 136-144. doi:10.1016/j.jpowsour.2018.02.085http://dx.doi.org/10.1016/j.jpowsour.2018.02.085
Park H K, Kong B S, Oh E S. Electrochem Commun, 2011, 13: 1051-1053. doi:10.1016/j.elecom.2011.06.034http://dx.doi.org/10.1016/j.elecom.2011.06.034
Kuruba R, Datta M K, Damodaran K, Jampani P H, Gattu B, Patel P P, Shanthi P M, Damle S, Kumta P N. J Power Sources, 2015, 298: 331-340. doi:10.1016/j.jpowsour.2015.07.102http://dx.doi.org/10.1016/j.jpowsour.2015.07.102
Yim C H, Courtel F M, Abu-Lebdeh Y. J Mater Chem A, 2013, 1: 8234-8243. doi:10.1039/c3ta10883jhttp://dx.doi.org/10.1039/c3ta10883j
Zuo P, Yang W, Cheng X, Yin G P. Ionics, 2011, 17: 87-90. doi:10.1007/s11581-010-0494-2http://dx.doi.org/10.1007/s11581-010-0494-2
Feng K, Li M, Zhang Y N, Liu W W, Kashkooli A G, Xiao X C, Chen Z W. Electrochim Acta, 2019, 309: 157-165. doi:10.1016/j.electacta.2019.04.033http://dx.doi.org/10.1016/j.electacta.2019.04.033
Gendensuren B, Oh E S. J Power Sources, 2018, 384: 379-386. doi:10.1016/j.jpowsour.2018.03.009http://dx.doi.org/10.1016/j.jpowsour.2018.03.009
Zhang J H, Wang N, Zhang W, Fang S, Yu Z L, Shi B N, Yang J Y. J Colloid Interface Sci , 2020, 578: 452-460. doi:10.1016/j.jcis.2020.06.008http://dx.doi.org/10.1016/j.jcis.2020.06.008
Huang S, Ren J G, Liu R, Bai Y, Li X L, Huang Y Y, Yue M, He X Q, Yuan G H. New J Chem, 2018, 42: 6742-6749. doi:10.1039/c8nj00423dhttp://dx.doi.org/10.1039/c8nj00423d
Liu Z, Han S J, Xu C, Luo Y W, Peng N, Qin C Y, Zhou M J, Wang W Q, Chen L W, Okada S. RSC Adv, 2016, 6: 68371-68378. doi:10.1039/c6ra12232ahttp://dx.doi.org/10.1039/c6ra12232a
El-Karsani K S M, Al-Muntasheri G A, Hussein I A. SPE J, 2014, 19: 135-149. doi:10.2118/163100-pahttp://dx.doi.org/10.2118/163100-pa
Sahiner N. Colloid Surf A-Physicochem Eng Asp, 2013, 433: 212-218. doi:10.1016/j.colsurfa.2013.05.029http://dx.doi.org/10.1016/j.colsurfa.2013.05.029
Wang X J, Hu D D, Yang J X. Chem Mater, 2007, 19: 2610-2621. doi:10.1021/cm062561ghttp://dx.doi.org/10.1021/cm062561g
Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G. Science, 2011, 334: 75-79. doi:10.1126/science.1209150http://dx.doi.org/10.1126/science.1209150
Yu L B, Liu J, He S S, Huang C F, Gan L H, Gong Z L, Long M N. J Phys Chem Solids, 2019, 135: 109-113. doi:10.1016/j.jpcs.2019.109113http://dx.doi.org/10.1016/j.jpcs.2019.109113
Yun Q B, Qin X Y, Lv W, He Y B, Li B H, Kang F Y, Yang Q H. Carbon, 2015, 93: 59-67. doi:10.1016/j.carbon.2015.05.032http://dx.doi.org/10.1016/j.carbon.2015.05.032
Chan C K, Peng H, Liu G, Mcilwrath K, Xiao F Z, Huggins R A, Yi C. Nat Nanotechnol, 2008, 3: 31-35. doi:10.1038/nnano.2007.411http://dx.doi.org/10.1038/nnano.2007.411
Chen C, Lee S H, Cho M, Kim J, Lee Y. ACS Appl Mater Interfaces, 2016, 8: 2658-2665. doi:10.1021/acsami.5b10673http://dx.doi.org/10.1021/acsami.5b10673
Liu Y Y, Gu J J , Zhang J L, Yu F, Wang J, Nie N, Li W. RSC Adv, 2015, 5: 9745-9751. doi:10.1039/c4ra14791jhttp://dx.doi.org/10.1039/c4ra14791j
Research Progress on the Application of Electrically Conductive Hydrogel Electrodes in Flexible Energy Storage Systems
Research Progress of Cathode Binder for High Performance Lithium-ion Battery
Radiation Synthesis and Properties of Imidazolium Hexafluorophosphate Poly(ionic liquid) Gel Electrolytes
Preparation and Performance of Inorganic Composite Separators for Lithium-ion Battery
Related Author
No data
Related Institution
School of Materials Science and Engineering, Southeast University
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology
Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology
China Automotive Battery Research Institute Co.
Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry, Key Laboratory for Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University