Cui Cong-cong,Liu Guo-jie,Gao He,et al.Preparation and Properties of Spiropyran-based Polydimethylsiloxane with Photo-responsive Wettability[J].ACTA POLYMERICA SINICA,2021,52(12):1568-1577.
Cui Cong-cong,Liu Guo-jie,Gao He,et al.Preparation and Properties of Spiropyran-based Polydimethylsiloxane with Photo-responsive Wettability[J].ACTA POLYMERICA SINICA,2021,52(12):1568-1577. DOI: 10.11777/j.issn1000-3304.2021.21112.
Preparation and Properties of Spiropyran-based Polydimethylsiloxane with Photo-responsive Wettability
smart materials have attracted much attention. The active switch of smart materials can be turned on or off reversibly in response to different external stimuli. Inspired by previous studies
we have prepared a photo-responsive smart wetting material with spiropyran as the active switch group. The photosensitive monomer 3-(3'
3'-dimethyl-6-nitrospiro-(chromene-2
2'-indolin)-1'-yl) propyl methacrylate (SPMA) was grafted on the surface of polydimethylsiloxane (PDMS) by free radical copolymerization to prepare a photo-responsive film named SPMA-
g
-PDMS. The film is sensitive to ambient light
and it is colorless and transparent under visible light
while after being excited by 365 nm ultraviolet light for 15 s
it immediately turn purplish
accompanied by the change of polarity
resulting in the wettability transition of the film. When SPMA-
g
-PDMS is exposed to visible light or darkness
the wettability of the film can be restored to its initial state. The difference of contact angle before and after ultraviolet irradiation can reach 38.5°. This remarkable performance of reversible switchable wetting gives SPMA-
g
-PDMS potential application value in the fields of biomedical materials
cell culture
non-enzymatic desorption
smart window coating and so on. In addition
after several alternating UV-visible light cycles
SPMA-
g
-PDMS still possesses good photo response and reversible wetting performances.
Kaner P, Hu X, Thomas S W, Asatekin A. ACS Appl Mater Interfaces, 2017, 9(15): 13619. doi:10.1021/acsami.7b01585http://dx.doi.org/10.1021/acsami.7b01585
Hao Y, Cui H, Meng J, Wang S. J Photoch Photobio A, 2018, 355: 202-211. doi:10.1016/j.jphotochem.2017.09.029http://dx.doi.org/10.1016/j.jphotochem.2017.09.029
Wang N, Li Y, Zhang Y, Liao Y, Liu W. Langmuir, 2014, 30(39): 11823-11832. doi:10.1021/la502916jhttp://dx.doi.org/10.1021/la502916j
Li G, Wang H, Zhu Z, Fan J B, Wang S. ACS Appl Mater Interfaces, 2019, 11(33): 29681-29688. doi:10.1021/acsami.9b11957http://dx.doi.org/10.1021/acsami.9b11957
Paramonov S V, Lokshin V, Fedorova O A. J Photochem Photobiol C: Photochem Rev, 2011, 12(3): 209-236. doi:10.1016/j.jphotochemrev.2011.09.001http://dx.doi.org/10.1016/j.jphotochemrev.2011.09.001
Bohne C, Barra M, Boch R, Abuin E, Scaiano J. J Photochem Photobiol A: Chem, 1992, 65(1-2): 249-265. doi:10.1016/1010-6030(92)85050-5http://dx.doi.org/10.1016/1010-6030(92)85050-5
Zhang X, Jin S, Ming Y, Liang Y, Yu L, Fan M, Luo J, Zuo Z, Yao S. J Photochem Photobiol A: Chem, 1994, 80(1-3): 221-225. doi:10.1016/1010-6030(94)85004-6http://dx.doi.org/10.1016/1010-6030(94)85004-6
Chang Yanhong(常艳红), Kang Hongliang(康宏亮), Li Guanghua(李光华), Han Haiwei(韩海威), Liu Ruigang(刘瑞刚). Acta Polymerica Sinica(高分子学报), 2016, (12): 1669-1677. doi:10.11777/j.issn1000-3304.2016.16089http://dx.doi.org/10.11777/j.issn1000-3304.2016.16089
Balmond E I, Tautges B K, Faulkner A L, Or V W, Hodur B M, Shaw J T, Louie A Y. J Org Chem, 2016, 81(19): 8744-8758. doi:10.1021/acs.joc.6b01193http://dx.doi.org/10.1021/acs.joc.6b01193
Nezhadghaffar-Borhani E, Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M. J Colloid Interface Sci, 2021, 593: 67-78. doi:10.1016/j.jcis.2021.03.012http://dx.doi.org/10.1016/j.jcis.2021.03.012
Spijker H J, Dirks A J, Hest J. Polymer, 2005, 46(19): 8528-8535. doi:10.1016/j.polymer.2005.02.127http://dx.doi.org/10.1016/j.polymer.2005.02.127
Dworak C, Ligon S C, Tiefenthaller R, Lagref J J, Liska R. Des Monomers Polym, 2015, 18(3): 262-270. doi:10.1080/15685551.2014.999466http://dx.doi.org/10.1080/15685551.2014.999466
Lukyanov B S, Lukyanova M B. ChemInform, 2006, 37(5): 281-311. doi:10.1002/chin.200605253http://dx.doi.org/10.1002/chin.200605253
Elizalde L E, Ledezma R, López R. Synthetic Commun, 2005, 35(4): 603-610. doi:10.1081/scc-200049808http://dx.doi.org/10.1081/scc-200049808
Liu J, Yao Y, Li X, Zhang Z. Chem Eng J, 2021, 408: 127262. doi:10.1016/j.cej.2020.127262http://dx.doi.org/10.1016/j.cej.2020.127262
Zhou J, Khodakov D A, Ellis A V, Voelcker N H. Electrophoresis, 2012, 33(1): 89-104. doi:10.1002/elps.201100482http://dx.doi.org/10.1002/elps.201100482
Razavi M, Primavera R, Vykunta A, Thakor A S. Mater Sci Eng C-Mater Biol Appl, 2021, 119: 111615. doi:10.1016/j.msec.2020.111615http://dx.doi.org/10.1016/j.msec.2020.111615
Li Y, Ren M, Lv P, Liu Y, Shao H, Wang C, Tang C, Zhou Y, Shuai M. J Mater Chem A, 2019, 7(12): 7242-7255. doi:10.1039/c8ta11111ahttp://dx.doi.org/10.1039/c8ta11111a
Long M, Peng S, Chen J, Yang X, Deng W. Colloid Surf A-Physicochem Eng Asp, 2016, 507: 7-17. doi:10.1016/j.colsurfa.2016.07.085http://dx.doi.org/10.1016/j.colsurfa.2016.07.085
Wenzel, Robert N. Trans Faraday Soc, 1936, 28(8): 988-994. doi:10.1021/ie50320a024http://dx.doi.org/10.1021/ie50320a024
Imato K, Nagata K, Watanabe R, Takeda N. J Mater Chem B, 2020, 8(12): 2393-2399. doi:10.1039/c9tb02958chttp://dx.doi.org/10.1039/c9tb02958c
Wang L, Xiong W, Tang H, Cao D. J Mater Chem C, 2019, 7(29): 9102-9111. doi:10.1039/c9tc02129ahttp://dx.doi.org/10.1039/c9tc02129a
Murase N, Ando T, Ajiro H. J Mater Chem B, 2020, 8(7): 1489-1495. doi:10.1039/c9tb02733ehttp://dx.doi.org/10.1039/c9tb02733e