Wang Ling-zhi,Ni Xing-qiang,Ren He,et al.Homo- and Copolymerization of 4-Methyl-1-pentene and 1-Hexene with Pyridylamido Hafnium Catalyst[J].ACTA POLYMERICA SINICA,2021,52(11):1481-1487.
Wang Ling-zhi,Ni Xing-qiang,Ren He,et al.Homo- and Copolymerization of 4-Methyl-1-pentene and 1-Hexene with Pyridylamido Hafnium Catalyst[J].ACTA POLYMERICA SINICA,2021,52(11):1481-1487. DOI: 10.11777/j.issn1000-3304.2021.21114.
Homo- and Copolymerization of 4-Methyl-1-pentene and 1-Hexene with Pyridylamido Hafnium Catalyst
As a new generation of olefin polymerization catalyst
pyridylamido hafnium catalysts have unique ligand-modified activation mechanism and high isoselectivity for
α
-olefins polymerization. In this study
polymerizations of 4-methyl-1-pentene (4MP) and 1-hexene (Hex) catalyzed by classic pyridylamido hafnium catalyst were investigated
especially for the copolymerizations of 4MP and Hex. The pyridylamido hafnium catalyst showed high activity toward homo- and copolymerizations of 4MP and Hex. Isoselective homopolymerization of 4MP afforded narrowly polydispersed poly(4-methyl-1-pentene) (PMP) with high melting temperature up to 239 ℃
while homopolymerization of Hex produced amorphous poly(1-hexene) with a bimodal distribution. Random copolymers of 4MP and Hex with different compositions were synthesized by adjusting the feed ratio of monomers. With decreasing feeding ratio of 4MP/Hex
monomer conversion and copolymerizataion activity increased because the hex-inserted hafnium active species was more active than the 4MP-inserted hafnium active species. Besides
decreasing feeding ratio of 4MP/Hex also led to a decrease in molecular weight and melting temperature of copolymer but caused a broadening in molecular weight distribution.
1
H- and
13
C-NMR spectrocopies clearly proved the resultant random copolymers were highly isotactic ([mmmm]
>
99%). The analysis results of differential scanning calorimetry (DSC)
and wide-angle X-ray diffraction (WAXD) of polymers showed that the insertion of Hex unit into PMP changed its melting temperature and crystallization property.
Markova S Y, Gries T, Teplyakov V V. J Membr Sci, 2020, 598: 117754. doi:10.1016/j.memsci.2019.117754http://dx.doi.org/10.1016/j.memsci.2019.117754
Lopez L C, Wilkes G L, Stricklen P M, White S A. J Macromol Sci, Part C: Polym Rev, 1992, 32: 301-406. doi:10.1080/15321799208021429http://dx.doi.org/10.1080/15321799208021429
Yazici O, Cakar F, Cankurtaran O, Karaman F. J Appl Polym Sci, 2009, 113: 901-906. doi:10.1002/app.29985http://dx.doi.org/10.1002/app.29985
Puleo P K, Paul D R, Wong P K. Polymer, 1989, 30: 1357-1366. doi:10.1016/0032-3861(89)90060-8http://dx.doi.org/10.1016/0032-3861(89)90060-8
Zhang Y F, Cheng X L. Phys B, 2019, 571: 112-117. doi:10.1016/j.physb.2019.06.068http://dx.doi.org/10.1016/j.physb.2019.06.068
Daniel C, Vitillo J G, Fasano G, Guerra G. ACS Appl Mater Interfaces, 2011, 3: 969-977. doi:10.1021/am200107whttp://dx.doi.org/10.1021/am200107w
Lou Junqin(楼均勤), Liu Xiaoyan(刘小燕), Fu Zhisheng(傅智盛), Wang Qi(王齐), Xu Junting(徐君庭), Fan Zhiqiang(范志强). Acta Polymerica Sinica(高分子学报), 2009, (8): 748-755. doi:10.3321/j.issn:1000-3304.2009.08.006http://dx.doi.org/10.3321/j.issn:1000-3304.2009.08.006
Watt W R. J Polym Sci, 1960, 45: 509-518. doi:10.1002/pol.1960.1204514619http://dx.doi.org/10.1002/pol.1960.1204514619
Descour C, Duchateau R, Mosia M R, Gruter G J M, Severn J R, Rastogi S. Polym Chem, 2011, 2: 2261-2272. doi:10.1039/c1py00257khttp://dx.doi.org/10.1039/c1py00257k
Gao H Y, Pan J, Guo L H, Xiao D J, Wu Q. Polymer, 2011, 52: 130-137. doi:10.1016/j.polymer.2010.11.008http://dx.doi.org/10.1016/j.polymer.2010.11.008
Boussie T R, Diamond G M, Goh C, Hall K A, LaPointe A M, Leclerc M K, Murphy V, Shoemaker J A W, Turner H, Rosen R K, Stevens J C, Alfano F, Busico V, Cipullo R, Talarico G. Angew Chem Int Ed, 2006, 45: 3278-3283. doi:10.1002/anie.200600240http://dx.doi.org/10.1002/anie.200600240
Boussie T R, Diamond G M, Goh C, Hall K A, LaPointe A M, Leclerc M K, Lund C, Murphy V, Shoemaker J A W, Tracht U, Turner H, Zhang J, Uno T, Rosen R K, Stevens J C. J Am Chem Soc, 2003, 125: 4306-4317. doi:10.1021/ja020868khttp://dx.doi.org/10.1021/ja020868k
Zuccaccia C, Busico V, Cipullo R, Talarico G, Froese R D J, Vosejpka P C, Hustad P D, Macchioni A. Organometallics, 2009, 28: 5445-5458. doi:10.1021/om900705vhttp://dx.doi.org/10.1021/om900705v
Froese R D J, Hustad P D, Kuhlman R L, Wenzel T T. J Am Chem Soc, 2007, 129: 7831-7840. doi:10.1021/ja070718fhttp://dx.doi.org/10.1021/ja070718f
Zuccaccia C, Macchioni A, Busico V, Cipillo R, Talarcivo G, Alfano F, Boone H, Frazier K A, Hustad P D, Stevens J C, Vosejpka P C, Abboud K A. J Am Chem Soc, 2008, 130: 10354-10368. doi:10.1021/ja802072nhttp://dx.doi.org/10.1021/ja802072n
Gao Y S, Mouat A R, Motta A, Macchioni A, Zuccaccia C, Delferro M, Marks T J. ACS Catal, 2015, 5: 5272-5282. doi:10.1021/acscatal.5b00788http://dx.doi.org/10.1021/acscatal.5b00788
Wang S M, Wang L Z, Zhong L, Xu R W, Wang X, Kang W Q, Gao H Y. Eur Polym J, 2020, 131: 109709. doi:10.1016/j.eurpolymj.2020.109709http://dx.doi.org/10.1016/j.eurpolymj.2020.109709
Domski G J, Eagan J M, De Rosa C, Di Girolamo R, LaPointe A M, Lobkovsky E B, Coates G W. ACS Catal, 2017, 7: 6930-6937. doi:10.1021/acscatal.7b02107http://dx.doi.org/10.1021/acscatal.7b02107
Busico V, Cipullo R, Pellecchia R, Rongo L, Talarico G, Macchioni A, Zuccaccia C, Froese R D J, Hustad P D. Macromolecules, 2009, 42: 4369-4373. doi:10.1021/ma900780xhttp://dx.doi.org/10.1021/ma900780x
Domski G J, Lobkovsky E B, Coates G W. Macromolecules, 2007, 40: 3510-3513. doi:10.1021/ma062824shttp://dx.doi.org/10.1021/ma062824s
Gao Y S, Chen X, Zhang J L, Chen J Z, Lohr T L, Marks T J. Macromolecules, 2018, 51 (6): 2401-2410. doi:10.1021/acs.macromol.8b00181http://dx.doi.org/10.1021/acs.macromol.8b00181
Zhang J L, Motta A, Gao Y S, Stalzer M M, Delferro M, Liu B P, Lohr T L, Marks T J. ACS Catal 2018, 8: 4893-4901. doi:10.1021/acscatal.8b00611http://dx.doi.org/10.1021/acscatal.8b00611
Yuan S F, Yan Y, Solan G A, Ma Y P, Sun W H. Coord Chem Rev, 2020, 411: 213254. doi:10.1016/j.ccr.2020.213254http://dx.doi.org/10.1016/j.ccr.2020.213254
Arriola D J, Carnahan E M, Hustad P D, Kuhlman R L, Wenzel T T. Science, 2006, 312: 714-719. doi:10.1126/science.1125268http://dx.doi.org/10.1126/science.1125268
Kulyabin P S, Uborsky D V, Voskoboynikov A Z, Canich J A M, Hagadorn J R. Dalton Trans, 2020, 49: 6693-6702. doi:10.1039/d0dt01031fhttp://dx.doi.org/10.1039/d0dt01031f
Zheng L R, Liu L, Shao C G, Wang W, Wang B, Pan L, Li Y S, Ma Z. Macromolecules, 2019, 52: 1188-1199. doi:10.1021/acs.macromol.8b02600http://dx.doi.org/10.1021/acs.macromol.8b02600
Frazier K A, Froese R D, He Y, Klosin J, Theriault C N, Vosejpka P C, Zhou Z, Abboud K A. Organometallics, 2011, 30: 3318-3329. doi:10.1021/om200167hhttp://dx.doi.org/10.1021/om200167h
Cueny E S, Landis C R. ACS Catal, 2019, 9: 3338-3348. doi:10.1021/acscatal.9b00250http://dx.doi.org/10.1021/acscatal.9b00250
Descour C, Meijer-Vissers T, Macko T, Parkinson M, Cavallo D, Drongelen M, Hubner G, Goossens H, Duchateau R. Polymer, 2012, 53: 3096-3106. doi:10.1016/j.polymer.2012.06.046http://dx.doi.org/10.1016/j.polymer.2012.06.046
Stehling U M, Stein K M, Fischer D, Waymouth R M. Macromolecules, 1999, 32: 14-20. doi:10.1021/ma980856chttp://dx.doi.org/10.1021/ma980856c
De Rosa C, Borriello A, Venditto V, Corradini P. Macromolecules, 1994, 27: 3864-3868. doi:10.1021/ma00092a028http://dx.doi.org/10.1021/ma00092a028
Ring-opening Copolymerization of L-Lactide and δ-Valerolactone Catalyzed by Benzoxazolyl Urea Catalyst/MTBD
Ethylene/Isoprene Copolymerization with Supported Ziegler-Natta Catalyst Containing Internal Electron Donor
Progress in Anionic Ring-opening Homo/Co-polymerization of Cyclosiloxanes
Synthesis and Characterization of Perfluorocyclobutyl Copoly(aryl ether)s Containing Biphenyl and Sulfonyl Moieties
Related Author
No data
Related Institution
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University
Institute of Chemical Materials, China Academy of Engineering Physics
Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology
School of Chemical Engineering, Dalian University of Technology, Liaoning High Performance Polymer Engineering Research Center, Liaoning Key Laboratory of Polymer Science and Engineering