浏览全部资源
扫码关注微信
中山大学材料学院 深圳 518107
Published:20 November 2021,
Published Online:22 July 2021,
Received:25 April 2021,
Revised:20 May 2021,
扫 描 看 全 文
陈朗昆,刘升华.绝缘聚合物添加剂:提高有机太阳能电池的效率及稳定性[J].高分子学报,2021,52(11):1459-1472.
Chen Lang-kun,Liu Sheng-hua.Insulating Polymer Additives for Improving the Efficiency and Stability of Organic Solar Cells[J].ACTA POLYMERICA SINICA,2021,52(11):1459-1472.
陈朗昆,刘升华.绝缘聚合物添加剂:提高有机太阳能电池的效率及稳定性[J].高分子学报,2021,52(11):1459-1472. DOI: 10.11777/j.issn1000-3304.2021.21120.
Chen Lang-kun,Liu Sheng-hua.Insulating Polymer Additives for Improving the Efficiency and Stability of Organic Solar Cells[J].ACTA POLYMERICA SINICA,2021,52(11):1459-1472. DOI: 10.11777/j.issn1000-3304.2021.21120.
近年来,随着活性层给体和受体材料的发展,单结有机太阳能电池(OSCs)的器件效率已经突破18%,被视为具有广阔应用前景的第三代光伏器件之一. 但OSCs的稳定性偏低一直是阻碍其产业化应用的最大瓶颈,且实现器件效率和稳定性的同步提升仍面临不小的挑战. 其中一个行之有效的策略是在OSCs中引入不同类型的添加剂. 本文总结了OSCs在提升器件效率和稳定性方面的挑战,综述了近年来一系列绝缘聚合物作为活性层添加剂在OSCs中应用的研究进展,从绝缘聚合物与活性层给体、受体材料形成三元共混结构和自组装迁移形成界面层两方面论述了提高器件效率和稳定性的方法. 最后指出了绝缘聚合物作为光伏器件添加剂的发展潜力和应用前景.
In recent years
with the development of donors and acceptors in active layer
the efficiency of single-junction organic solar cells (OSCs) has now exceeded 18%
which is regarded as one of the third-generation photovoltaics with broad application prospects. However
the relatively low stability of the devices remains the biggest bottleneck
which hinders the industrial application of the OSCs. And the simultaneous improvement of the device efficiency and stability still faces a big challenge. One of the effective strategies is to introduce various types of additives into the OSCs. As one of the most potential additives in OSCs
insulating polymers are capable of forming ternary hybrid structures with donors and acceptors
or have good self-assembly properties
which improve the PCE effectively. Meanwhile
due to their excellent stability or physical properties
insulating polymers are conducive to maintaining the morphology of the active layer and isolating oxygen and water
which enhance the stability of devices and greatly promote the development of OSCs. The challenges of device efficiency and stability that OSCs faces are summarized. The recent research progress of a series of insulating polymers as active layer additives in the applications of OSCs is reviewed. The methods for improving the efficiency and stability of devices in terms of the formation of ternary blend structures between the insulating polymers and active layer materials
as well as the formation of interface structures by self-assembly and migration are systematically discussed. Finally
the potential and application prospects of insulating polymers as additives in photovoltaic devices are indicated.
有机太阳能电池绝缘聚合物自组装玻璃化温度界面层
Organic solar cellsInsulating polymersSelf-assemblyGlass transition temperatureInterface layer
Li Tengfei(李腾飞), Zhan Xiaowei(占肖卫). Acta Chim Sin(化学学报), 2021, 79(3): 257-283. doi:10.6023/a20110502http://dx.doi.org/10.6023/a20110502
Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Science, 1995, 270(5243): 1789-1791. doi:10.1126/science.270.5243.1789http://dx.doi.org/10.1126/science.270.5243.1789
Segura J, Martín N, Guldi D. Chem Soc Rev, 2005, 34(1): 31-47. doi:10.1039/b402417fhttp://dx.doi.org/10.1039/b402417f
Brédas J, Norton J, Cornil J, Coropceanu V. Acc Chem Res, 2009, 42(11): 1691-1699. doi:10.1021/ar900099hhttp://dx.doi.org/10.1021/ar900099h
Li G, Zhu R, Yang Y. Nat Photonics, 2012, 6(3): 153-161. doi:10.1038/nphoton.2012.11http://dx.doi.org/10.1038/nphoton.2012.11
Padinger F, Rittberger R, Sariciftci N. Adv Funct Mater, 2003, 13(1): 85-88. doi:10.1002/adfm.200390011http://dx.doi.org/10.1002/adfm.200390011
Liang Y, Xu Z, Xia J, Tsai S, Wu Y, Li G, Ray C, Yu L. Adv Mater, 2010, 22(20): E135-E138. doi:10.1002/adma.200903528http://dx.doi.org/10.1002/adma.200903528
Yan C, Barlow S, Wang Z, Yan H, Jen A, Marder S, Zhan X. Nat Rev Mater, 2018, 3(3): 18003. doi:10.1038/natrevmats.2018.3http://dx.doi.org/10.1038/natrevmats.2018.3
Lin Y, Wang J, Zhang Z, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27(7): 1170-1174. doi:10.1002/adma.201404317http://dx.doi.org/10.1002/adma.201404317
Yuan J, Zhang Y, Zhou L, Zhang G, Yip H, Lau T, Lu X, Zhu C, Peng H, Johnson P, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3(4): 1140-1151. doi:10.1016/j.joule.2019.01.004http://dx.doi.org/10.1016/j.joule.2019.01.004
Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L. Sci Bull, 2020, 65(4): 272-275. doi:10.1016/j.scib.2020.01.001http://dx.doi.org/10.1016/j.scib.2020.01.001
Firdaus Y, Vincent M, Corre L, Khan J, Kan Z, Laquai F, Beaujuge P, Anthopoulos T. Adv Sci, 2019, 6(9): 1802028. doi:10.1002/advs.201802028http://dx.doi.org/10.1002/advs.201802028
Cheng P, Li G, Zhan X, Yang Y. Nat Photonics, 2018, 12: 131-142. doi:10.1038/s41566-018-0104-9http://dx.doi.org/10.1038/s41566-018-0104-9
Wang J, Zhan X. Acc Chem Res, 2021, 54(1): 132-143. doi:10.1021/acs.accounts.0c00575http://dx.doi.org/10.1021/acs.accounts.0c00575
Zang Y, Li C, Chueh C, Williams S, Jiang W, Wang Z, Yu J, Jen A. Adv Mater, 2014, 26(32): 5708-5714. doi:10.1002/adma.201401992http://dx.doi.org/10.1002/adma.201401992
Hou J, Inganas O, Friend R, Gao F. Nat Mater, 2018, 17(2): 119-128. doi:10.1038/nmat5063http://dx.doi.org/10.1038/nmat5063
Cheng P, Zhan X. Mater Horiz, 2015, 2: 462-485. doi:10.1039/c5mh00090dhttp://dx.doi.org/10.1039/c5mh00090d
Cheng P, Yan C, Lau T, Mai J, Lu X, Zhan X. Adv Mater, 2016, 28(28): 5822-5829. doi:10.1002/adma.201600426http://dx.doi.org/10.1002/adma.201600426
Su L Y, Huang H, Lin Y, Chen G, Chen W, Chen W, Wang L, Chueh C. Adv Funct Mater, 2021, 31: 2005753. doi:10.1002/adfm.202005753http://dx.doi.org/10.1002/adfm.202005753
Yao K, Zhong H, Liu Z, Xiong M, Leng S, Zhang J, Xu Y, Wang W, Zhou L, Huang H, Jen A. ACS Nano, 2019, 13(5): 5397-5409. doi:10.1021/acsnano.9b00135http://dx.doi.org/10.1021/acsnano.9b00135
Wu L, Huang J, Xie Y, Hong L, Peng R, Song W, Huang L, Zhu L, Ge Z. Sol RRL, 2019, 3(8): 1900117. doi:10.1002/solr.201900117http://dx.doi.org/10.1002/solr.201900117
Wang Y, Jia B, Wang J, Xue P, Xiao Y, Li T, Wang J, Lu H, Tang Z, Lu X, Huang F, Zhan X. Adv Mater, 2020, 32(29): 2002066. doi:10.1002/adma.202002066http://dx.doi.org/10.1002/adma.202002066
Lin Y, Heng X, Liu J, Wahyudi W, Yarali E, Faber H, Bakr O, Tsetseris L, Heeney M, Anthopoulos T. ACS Energy Lett, 2020, 5(12): 3663-3671. doi:10.1021/acsenergylett.0c01949http://dx.doi.org/10.1021/acsenergylett.0c01949
Fu J, Chen S, Yang K, Jung S, Lv J, Lan L, Chen H, Hu D, Yang Q, Duan T, Kan Z, Yang C, Sun K, Lu S, Xiao Z, Li Y. iScience, 2020, 23(3): 100965. doi:10.1016/j.isci.2020.100965http://dx.doi.org/10.1016/j.isci.2020.100965
Chang B, Cheng H W, Lin Y, Wang H, Chen C, Nguyen V, Yang Y, Wei K. ACS Appl Mater Interfaces, 2020, 12(49): 55023-55032. doi:10.1021/acsami.0c14461http://dx.doi.org/10.1021/acsami.0c14461
Rafique S, Abdullah S, Shahid M, Ansari M, Sulaiman K. Sci Rep, 2017, 7(1): 39555. doi:10.1038/srep39555http://dx.doi.org/10.1038/srep39555
Yun J, Yeo J, Kim J, Jeong H, Kim D, Noh Y, Kim S, Ku B, Na S. Adv Mater, 2011, 23(42): 4923-4928. doi:10.1002/adma.201102207http://dx.doi.org/10.1002/adma.201102207
Lin Y, Firdaus Y, Isikgor F, Nugraha M, Yengel E, Harrison G, Anthopoulos T. ACS Energy Lett, 2020, 5(9): 2935-2944. doi:10.1021/acsenergylett.0c01421http://dx.doi.org/10.1021/acsenergylett.0c01421
Lin Y, Adilbekova B, Firdaus Y, Yengel E, Faber H, Sajjad M, Zheng X, Yarali E, Seitkhan A, Bakr O. Adv Mater, 2019, 31(46): 1902965. doi:10.1002/adma.201902965http://dx.doi.org/10.1002/adma.201902965
Xing W, Chen Y, Wang X, Lv L, Ouyang X, Ge Z, Huang H. ACS Appl Mater Interfaces, 2016, 8(40): 26916-26923. doi:10.1021/acsami.6b06081http://dx.doi.org/10.1021/acsami.6b06081
Rafique S, Abdullah S, Shahid M, Ansari M, Sulaiman K. Sci Rep, 2017, 7(1): 1-10. doi:10.1038/srep39555http://dx.doi.org/10.1038/srep39555
Fan Q, Su W, Chen S, Kim W, Chen X, Lee B, Liu T, Mendez-Romero U, Ma R, Yang T J. Joule, 2020, 4(3): 658-672. doi:10.1016/j.joule.2020.01.014http://dx.doi.org/10.1016/j.joule.2020.01.014
Fan Q, Su W, Chen S, Liu T, Zhuang W, Ma R, Wen X, Yin Z, Luo Z, Guo X. Angew Chem, 2020, 132(45): 20007-20012. doi:10.1002/ange.202005662http://dx.doi.org/10.1002/ange.202005662
Dou L, You J, Hong Z, Xu Z, Li G, Street R, Yang Y. Adv Mater, 2013, 25(46): 6642-6671. doi:10.1002/adma.201302563http://dx.doi.org/10.1002/adma.201302563
Wang T, Liu J, Hao X. Sol RRL, 2020, 4(12): 2000539. doi:10.1002/solr.202000539http://dx.doi.org/10.1002/solr.202000539
Scaccabarozzi A, Stingelin N. J Mater Chem A, 2014, 2(28): 10818-10824. doi:10.1039/c4ta01065ehttp://dx.doi.org/10.1039/c4ta01065e
Liao H, Ho C, Chang C, Jao M, Darling S, Su W. Mater Today, 2013, 16(9): 326-336. doi:10.1016/j.mattod.2013.08.013http://dx.doi.org/10.1016/j.mattod.2013.08.013
Lee H, Park C, Sin D, Park J, Cho K. Adv Mater, 2018, 30(34): 1800453. doi:10.1002/adma.201800453http://dx.doi.org/10.1002/adma.201800453
Vinokur J, Shamieh B, Deckman I, Singhal A, Frey G. Chem Mater, 2016, 28(24): 8851-8870. doi:10.1021/acs.chemmater.6b03770http://dx.doi.org/10.1021/acs.chemmater.6b03770
Huang Y, Wen W, Mukherjee S, Ade H, Kramer E, Bazan G. Adv Mater, 2014, 26(24): 4168-4172. doi:10.1002/adma.201400497http://dx.doi.org/10.1002/adma.201400497
McDowell C, Abdelsamie M, Zhao K, Smilgies D, Bazan G, Amassian A. Adv Energy Mater, 2015, 5(18): 1501121. doi:10.1002/aenm.201501121http://dx.doi.org/10.1002/aenm.201501121
Kurosawa T, Gu X, Gu K, Zhou Y, Yan H, Wang C, Wang G, Toney M, Bao Z. Adv Energy Mater, 2018, 8(2): 1701552. doi:10.1002/aenm.201701552http://dx.doi.org/10.1002/aenm.201701552
Wang T, Yang X, Bi P, Niu M, Feng L, Liu J, Hao X. Sol RRL, 2019, 3(8): 1900087. doi:10.1002/solr.201900087http://dx.doi.org/10.1002/solr.201900087
Wang M, Liu S, You P, Wang N, Tang G, Miao Q, Yan F J. Sol RRL, 2020, 4(6): 2000013. doi:10.1002/solr.202000013http://dx.doi.org/10.1002/solr.202000013
Oh J, Jung S, Jeong M, Lee B, Lee J, Cho Y, Lee S, Chen S, Zhang Z, Li Y. J Mater Chem C, 2019, 7(16): 4716-4724. doi:10.1039/c9tc00762hhttp://dx.doi.org/10.1039/c9tc00762h
Lee B, Jeong M, Lee J, Oh J, Cho Y, Jung S, Lee S, Chen S, Yang C. Sol RRL, 2019, 3(6): 1900033. doi:10.1002/solr.201900033http://dx.doi.org/10.1002/solr.201900033
Han J, Bao F, Huang D, Wang X, Yang C, Yang R, Jian X, Wang J, Bao X, Chu J. Adv Funct Mater, 2020, 30(38): 2003654. doi:10.1002/adfm.202003654http://dx.doi.org/10.1002/adfm.202003654
He Y, Chen H, Hou J, Li Y. J Am Chem Soc, 2010, 132(4): 1377-1382. doi:10.1021/ja908602jhttp://dx.doi.org/10.1021/ja908602j
Kang H, Lee J, Jung S, Yu K, Kwon S, Hong S, Kee S, Lee S, Kim D, Lee K. Nanoscale, 2013, 5(23): 11587-11591. doi:10.1039/c3nr04381ahttp://dx.doi.org/10.1039/c3nr04381a
Kang H, Kee S, Yu K, Lee J, Kim G, Kim J, Kim J, Kong J, Lee K. Adv Mater, 2015, 27(8): 1408-1413. doi:10.1002/adma.201404765http://dx.doi.org/10.1002/adma.201404765
Kim S, Kang H, Hong S, Lee J, Lee S, Park B, Kim J, Lee K. Adv Funct Mater, 2016, 26(21): 3563-3569. doi:10.1002/adfm.201505161http://dx.doi.org/10.1002/adfm.201505161
Zhang X, Liu C, Li Z, Guo J, Zhou Y, Shen L, Zhang L, Guo W. Electrochim Acta, 2018, 285: 365-372. doi:10.1016/j.electacta.2018.08.016http://dx.doi.org/10.1016/j.electacta.2018.08.016
Wang H, Zhang W, Xu C, Bi X, Chen B, Yang S. ACS Appl Mater Interfaces, 2013, 5(1): 26-34. doi:10.1021/am302317vhttp://dx.doi.org/10.1021/am302317v
Chen F, Chien S. J Mater Chem, 2009, 19(37): 6865-6869. doi:10.1039/b907773ahttp://dx.doi.org/10.1039/b907773a
Cao F, Lai Y, Chen Y, Cheng Y. J Mater Chem A, 2016, 4(22): 8707-8715. doi:10.1039/c6ta01983hhttp://dx.doi.org/10.1039/c6ta01983h
Yao K, Chen L, Chen X, Chen Y. Chem Mater, 2013, 25(6): 897-904. doi:10.1021/cm400297phttp://dx.doi.org/10.1021/cm400297p
Yu L, Li C, Li Q, Wang F, Lin J, Liu J, Hu S, Zheng H, Tan Z. Org Electron, 2015, 23: 99-104. doi:10.1016/j.orgel.2015.04.012http://dx.doi.org/10.1016/j.orgel.2015.04.012
Yamakawa S, Tajima K, Hashimoto K. Org Electron, 2009, 10(3): 511-514. doi:10.1016/j.orgel.2008.12.014http://dx.doi.org/10.1016/j.orgel.2008.12.014
Lee W, Jeong S, Lee C, Han G, Cho C, Lee J, Kim B. Adv Energy Mater, 2017, 7(17): 1602812. doi:10.1002/aenm.201602812http://dx.doi.org/10.1002/aenm.201602812
Yang B, Zhang S, Li S, Yao H, Li W, Hou J. Adv Mater, 2019, 31(2): 1804657. doi:10.1002/adma.201804657http://dx.doi.org/10.1002/adma.201804657
Ge Y, Hu L, Zhang L, Fu Q, Xu G, Xing Z, Huang L, Zhou W, Chen Y. ACS Appl Mater Interfaces, 2020, 12(9): 10706-10716. doi:10.1021/acsami.9b18095http://dx.doi.org/10.1021/acsami.9b18095
Zhang Q, Wang C, Liu X, Fahlman M. Sol RRL, 2021, 5(1): 2000575. doi:10.1002/solr.202000575http://dx.doi.org/10.1002/solr.202000575
Dekman I, Brener R, Frey G. J Mater Chem C, 2013, 1(40): 6522-6525. doi:10.1039/c3tc31430hhttp://dx.doi.org/10.1039/c3tc31430h
Deckman I, Moshonov M, Obuchovsky S, Brener R, Frey G. J Mater Chem A, 2014, 2(39): 16746-16754. doi:10.1039/c4ta03912bhttp://dx.doi.org/10.1039/c4ta03912b
Deckman I, Obuchovsky S, Moshonov M, Frey G. Langmuir, 2015, 31(24): 6721-6728. doi:10.1021/acs.langmuir.5b00884http://dx.doi.org/10.1021/acs.langmuir.5b00884
Vinokur J, Deckman I, Obuchovsky S, Weinfeld K, Frey G. The effect of thermal annealing on additive migration to the organic/metal interface in OPVs. In: Organic Photovoltaics XVI (Vol. 9567). San Diego, California: International Society for Optics and Photonics, 2015. 95670X. doi:10.1117/12.2189895http://dx.doi.org/10.1117/12.2189895
Papamakarios V, Polydorou E, Soultati A, Droseros N, Tsikritzis D, Douvas A, Palilis L, Fakis M, Kennou S, Argitis P, Vasilopoulou M. ACS Appl Mater Interfaces, 2016, 8(2): 1194-1205. doi:10.1021/acsami.5b09533http://dx.doi.org/10.1021/acsami.5b09533
Bai S, Jin Y, Liang X, Ye Z, Wu Z, Sun B, Ma Z, Tang Z, Wang J, Würfel U, Gao F, Zhang F. Adv Energy Mater, 2015, 5(5): 1401606. doi:10.1002/aenm.201401606http://dx.doi.org/10.1002/aenm.201401606
Cheng P, Zhan X. Chem Soc Rev, 2016, 45: 2544-2582. doi:10.1039/c5cs00593khttp://dx.doi.org/10.1039/c5cs00593k
0
Views
93
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution