The fabrication of shape memory polymers (SMPs) with robust mechanical properties
stable shape memory performance
and the capability to heal mechanical damage and fatigue of shape memory effect is highly desired but remains challenging. In this work
mechanically robust poly(vinyl alcohol) (PVA)-based shape memory supramolecular plastics capable of healing mechanical damage and fatigue of shape memory effect are fabricated by dispersing pyridine-functionalized polyhedral oligomeric silsesquioxane (Py-POSS) in PVA matrix. Due to the hydrogen bonds among PVA and Py-POSS
the stability of the physically cross-linked PVA network are effectively enhanced. The mechanical properties of the PVA/Py-POSS
x
supramolecular plastics
where
x
represents the weight ratio of Py-POSS to PVA
can be well-tailored by tailoring the mass ratio of the dispersed Py-POSS. The PVA/Py-POSS
2.7
exhibits the highest mechanical strength
with the tensile strength and storage modulus being ~85.7 MPa and ~6.0 GPa
respectively. Meanwhile
the PVA/Py-POSS
2.7
exhibits ultra-high shape memory effect with a shape recovery ratio (
R
r
) and shape fixing ratio (
R
f
) around ~99%. Due to the reversibility of hydrogen bonds
mobility of PVA chains can be greatly improved in the presence of water
which allows the PVA/Py-POSS
2.7
to heal the fatigued shape memory function. The total recovery ratio (
R
r
tot
) of the PVA/Py-POSS
2.7
is maintained above 93% after 90 folding/recovery cycles by conducting the healing step in a 90% RH environment after every 10 shape memory cycles. Based on the same mechanism
the mechanical damage on the PVA/Py-POSS
2.7
can also be fully healed with the assistance of water. The healed PVA/Py-POSS
2.7
exhibits the same shape memory function as the original sample does. The combination of ultra-high mechanical strength and healability enables the PVA/Py-POSS
2.7
to maintain its excellent shape memory performance during long time and repeated usage. Integrating nanofillers that have reversible interactions with polymer materials provide an effective avenue for fabricating high-performance SMPs with enhanced reliability and prolonged service time.
Miaudet P, Derre A, Maugey M, Zakri C, Piccione P M, Inoubli R, Poulin P. Science, 2007, 318(5854): 1294-1296. doi:10.1126/science.1145593http://dx.doi.org/10.1126/science.1145593
Behl M, Razzaq M Y, Lendlein A. Adv Mater, 2010, 22(31): 3388-3410. doi:10.1002/adma.200904447http://dx.doi.org/10.1002/adma.200904447
Lendlein A, Kelch S. Angew Chem Int Ed, 2002, 41(12): 2034-2057. doi:10.1002/1521-3773(20020617)41:12<2034::aid-anie2034>3.0.co;2-mhttp://dx.doi.org/10.1002/1521-3773(20020617)41:12<2034::aid-anie2034>3.0.co;2-m
Kim W, Lim K, Kim W, Park E, Kim D. Prog Mater Sci, 2021, 118: 100756. doi:10.1016/j.pmatsci.2020.100756http://dx.doi.org/10.1016/j.pmatsci.2020.100756
Zaeem MA, Zhang N, Mamivand M, Comput Mater Sci, 2019, 160: 120-136. doi:10.1016/j.commatsci.2018.12.062http://dx.doi.org/10.1016/j.commatsci.2018.12.062
Huang Miaoming(黄淼铭), Dong Xia(董侠), Liu Weili(刘伟丽), Gao Xia(高霞), Wang Dujin(王笃金). Acta Polymerica Sinica(高分子学报), 2017, (4): 563-579. doi:10.11777/j.issn1000-3304.2017.16229http://dx.doi.org/10.11777/j.issn1000-3304.2017.16229
Xu J, Song J. Proc Natl Acad Sci USA, 2010, 107(17): 7652-7657. doi:10.1073/pnas.0912481107http://dx.doi.org/10.1073/pnas.0912481107
Bai Y, Zhang J, Chen X. ACS Appl Mater Interfaces, 2018, 10(16): 14017-14025. doi:10.1021/acsami.8b01425http://dx.doi.org/10.1021/acsami.8b01425
Li G, Yan Q, Xia H, Zhao Y. ACS Appl Mater Interfaces, 2015, 7(22): 12067-12073. doi:10.1021/acsami.5b02234http://dx.doi.org/10.1021/acsami.5b02234
Darabi M A, Khosrozadeh A, Wang Y, Ashammakhi N, Alem H, Erdem A, Chang Q, Xu K, Liu Y, Luo G, Khademhosseini A, Xing M. Adv Sci, 2020, 7(21): 1902740. doi:10.1002/advs.201902740http://dx.doi.org/10.1002/advs.201902740
Yang L, Wang Z, Fei G, Xia H. Macromol Rapid Commun, 2017, 38(23): 1700421. doi:10.1002/marc.201700421http://dx.doi.org/10.1002/marc.201700421
Yu K, Li H, McClung A J, Tandon G P, Baur J W, Qi H J. Soft Matter, 2016, 12(13): 3234-3245. doi:10.1039/c5sm02781khttp://dx.doi.org/10.1039/c5sm02781k
Fan X, Tan B H, Li Z, Loh X J. ACS Sustain Chem Eng, 2017, 5(11): 1217-1227
Yu K, Xie T, Leng J S, Ding Y F, Qi H J. Soft Matter, 2012, 8(20): 5687-5695. doi:10.1039/c2sm25292ahttp://dx.doi.org/10.1039/c2sm25292a
Müller W W, Pretsch T. Eur Polym J, 2010, 46(8): 1745-1758. doi:10.1016/j.eurpolymj.2010.05.004http://dx.doi.org/10.1016/j.eurpolymj.2010.05.004
Xiang Z, Zhang L, Yuan T, Li Y, Sun J. ACS Appl Mater Interfaces, 2018, 10(3): 2897-2906. doi:10.1021/acsami.7b14588http://dx.doi.org/10.1021/acsami.7b14588
Rodriguez E D, Luo X, Mather P T. ACS Appl Mater Interfaces, 2011, 3(2): 152-161. doi:10.1021/am101012chttp://dx.doi.org/10.1021/am101012c
Wang X, Li Y, Qian Y, Qi H, Li J, Sun J. Adv Mater, 2018, 30(36): 1803854. doi:10.1002/adma.201803854http://dx.doi.org/10.1002/adma.201803854
Wang X, Zhan S, Lu Z, Li J, Yang X, Qiao Y, Men Y, Sun J. Adv Mater, 2020, 32(50): 2005759. doi:10.1002/adma.202005759http://dx.doi.org/10.1002/adma.202005759
Heo Y, Sodano H A. Adv Funct Mater, 2014, 24(33): 5261-5268. doi:10.1002/adfm.201400299http://dx.doi.org/10.1002/adfm.201400299
Luo X F, Mather P T. ACS Macro Lett, 2013, 2(2): 152-156. doi:10.1021/mz400017xhttp://dx.doi.org/10.1021/mz400017x
Li Y, Chen S, Li X, Wu M, Sun J. ACS Nano, 2015, 9(10): 10055-10065. doi:10.1021/acsnano.5b03629http://dx.doi.org/10.1021/acsnano.5b03629
Williams G A, Ishige R, Cromwell O R, Chung J, Takahara A, Guan Z. Adv Mater, 2015, 27(26): 3934-3941. doi:10.1002/adma.201500927http://dx.doi.org/10.1002/adma.201500927
Zhu B, Jasinski N, Benitez A, Noack M, Park D, Goldmann A S, Barner-Kowollik C, Walther A. Angew Chem Int Ed, 2015, 54(30): 8653-8657. doi:10.1002/anie.201502323http://dx.doi.org/10.1002/anie.201502323
Zhan S, Wang X, Sun J. Macromol Rapid Commun, 2020, 41(24): 2000097. doi:10.1002/marc.202000097http://dx.doi.org/10.1002/marc.202000097
Miyamae K, Nakahata M, Takashima Y, Harada A. Angew Chem Int Ed, 2015, 54(31): 8984-8987. doi:10.1002/anie.201502957http://dx.doi.org/10.1002/anie.201502957
Huang W M, Ding Z, Wang C C , Wei J, Zhao Y, Purnawali H. Mater Today, 2010, 13(7-8): 54-61. doi:10.1016/s1369-7021(10)70128-0http://dx.doi.org/10.1016/s1369-7021(10)70128-0
Chen Y, Kushner A M, Williams G A, Guan Z. Nat Chem, 2012, 4(6): 467-472. doi:10.1038/nchem.1314http://dx.doi.org/10.1038/nchem.1314
Yanagisawa Y, Nan Y, Okuro K, Aida T. Science, 2018, 359(6371): 72-76. doi:10.1126/science.aam7588http://dx.doi.org/10.1126/science.aam7588
Agarwal P, Chopra M, Archer L A. Angew Chem Int Ed, 2011, 50(37): 8670-8673. doi:10.1002/anie.201103908http://dx.doi.org/10.1002/anie.201103908
Li J, Viveros J A, Wrue M H, Anthamatten M. Adv Mater, 2007, 19(19): 2851-2855. doi:10.1002/adma.200602260http://dx.doi.org/10.1002/adma.200602260
Zhang R, Guo X, Liu Y, Leng J. Compos Struct, 2014, 112(5): 226-230
Tang Z, Huang J, Guo B, Zhang L, Liu F. Macromolecules, 2016, 49(5): 1781-1789. doi:10.1021/acs.macromol.5b02756http://dx.doi.org/10.1021/acs.macromol.5b02756
Li B, Lu X, Ma Y, Chen Z. Eur Polym J, 2014, 60: 255-26. doi:10.1016/j.eurpolymj.2014.09.017http://dx.doi.org/10.1016/j.eurpolymj.2014.09.017
Ikkala O, Ruokolainen J, ten Brinke G, Torkkeli M, Serimaa R. Macromolecules, 1995, 28(21): 7088-7094. doi:10.1021/ma00125a009http://dx.doi.org/10.1021/ma00125a009
Xiao X, Qiu X, Kong D, Zhang W, Liu Y, Leng J. Soft Matter, 2016, 12(11): 2894-2900. doi:10.1039/c5sm02703ahttp://dx.doi.org/10.1039/c5sm02703a
Preparation and Electrochemical Performance of Polyzwitterion Containing Intramolecular Salt as Solid Electrolytes for Lithium-ion Batteries
Adsorption Behavior of Lysozyme by Sponge-like Materials Based on Electrospinning
Intrinsic Self-healing Polysiloxane Materials: From Single Dynamic Crosslinked Network to Multiple Dynamic Crosslinked Networks
Self-healing Solid-state Polymer Electrolyte Based on Zwitterions
Related Author
No data
Related Institution
University of Science and Technology of China
CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
Materials Science and Engineering, Shandong University of Technology
College of Chemistry and Chemical Engineering, Qingdao University
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer Based Composites of Guangdong Province, School of Chemistry, Sun Yat-Sen University