浏览全部资源
扫码关注微信
1.同济大学附属第十人民医院骨科 上海 200072
2.同济大学材料科学与工程学院高分子材料系 上海 201804
Yun-qing Zhu, E-mail: 1019zhuyq@tongji.edu.cn
Jian-zhong Du, E-mail: jzdu@tongji.edu.cn
Published:20 December 2021,
Published Online:02 September 2021,
Received:11 May 2021,
扫 描 看 全 文
江金辉,杨雨嬴,凡刘杰等.一步酸化法制备抗菌肽胶束及其抗菌性能研究[J].高分子学报,2021,52(12):1559-1567.
Jiang Jin-hui,Yang Yu-ying,Fan Liu-jie,et al.Antibacterial Micelles Self-assembled from Copolypeptides through a One-step Acidification Process[J].ACTA POLYMERICA SINICA,2021,52(12):1559-1567.
江金辉,杨雨嬴,凡刘杰等.一步酸化法制备抗菌肽胶束及其抗菌性能研究[J].高分子学报,2021,52(12):1559-1567. DOI: 10.11777/j.issn1000-3304.2021.21135.
Jiang Jin-hui,Yang Yu-ying,Fan Liu-jie,et al.Antibacterial Micelles Self-assembled from Copolypeptides through a One-step Acidification Process[J].ACTA POLYMERICA SINICA,2021,52(12):1559-1567. DOI: 10.11777/j.issn1000-3304.2021.21135.
提出了简化抗菌肽纳米粒子制备流程的“一步酸化法”. 利用[1-(4-氨基苯基)-1
2
2-三苯基]乙烯(TPE-NH
2
)引发
N
ε
-三氟乙酰基-l-赖氨酸环内酸酐[Lys(Tfa) NCA]和l-谷氨酸-
γ
-苄酯环内酸酐(BLG NCA)单体的开环共聚,然后选择性脱除三氟乙酰保护基,制备了无规共聚多肽TPE-P(Lys
28
-
stat
-BLG
16
). 随后,采取一步酸化法直接制备了共聚多肽胶束溶液. 抗菌实验结果表明,该抗菌肽胶束对大肠杆菌及金黄色葡萄球菌的最低抑菌浓度分别为256和64 μg/mL,最低杀菌浓度分别为400和100 μg/mL. 此外,由于其四苯乙烯(TPE)端基具有聚集诱导发光效应,该抗菌肽胶束还有望用于可视化探究抗菌机理.
We propose a one-step acidification method for facile preparation of antibacterial micelles. The random copolypeptide TPE-P(Lys
28
-
stat
-BLG
16
) was obtained by selective deprotection of the trifluoroacetyl groups from a TPE-P[Lys(Tfa)
28
-
stat
-BLG
16
] precursor. This initial random copolypeptide was synthesized by ring-opening copolymerization of
N
ε
-trifluoroacetyl-l-lysine
N
-carboxyanhydride [Lys(Tfa) NCA] and
γ
-benzyl-l-glutamate
N
-carboxyanhydride (BLG NCA) using 4-(1
2
2-triphenylvinyl)aniline (TPE-NH
2
) as initiator. After polymerization and deprotection
polymer micelles were formed by acidification of the crude aqueous TPE-P(Lys
28
-
stat
-BLG
16
) reaction mixture. Thus
this method is called a "one-step acidification process". The obtained micelles should have good antibacterial properties
given that this random copolypeptide comprises a large number of aromatic and amino groups. The antibacterial properties of these micelles were evaluated using the broth microdilution method and the plate paint method
to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). These tests showed that these polymer micelles have indeed antibacterial properties: the determined MICs for
E
.
coli
and
S
.
aureus
were 256 and 64 μg/mL; the determined MBCs for these bacteria were 400 and 100 μg/mL
respectively. Interestingly
these antibacterial micelles produce bright blue fluorescence light under UV exposure
owing to the aggregation-induced emission (AIE) effect of the TPE end groups. Herein
this property was used to optically explore the antibacterial mechanism of these polymer micelles. This approach indicated that these polymer micelles kill bacteria by piercing their membrane
via
a physically damaging process.
聚多肽一步酸化法胶束自组装抗菌
PolypeptidesOne-step acidificationMicellesSelf-assemblyAntibacterial
Coates A, Hu Y, Bax R, Page C. Nat Rev Drug Discov, 2002, 1(11): 895-910. doi:10.1038/nrd940http://dx.doi.org/10.1038/nrd940
Haebich D, von Nussbaum F. Chemmedchem, 2006, 1(9): 951-954
Mingzhang W, Zhizhong C. Pharm Biotechnol, 2011, 18(4): 355-358
Tan Y T, Tillett D J, McKay I A. Mol Med Today, 2000, 6(8): 309-314. doi:10.1016/s1357-4310(00)01739-1http://dx.doi.org/10.1016/s1357-4310(00)01739-1
Sun H, Hong Y, Xi Y, Zou Y, Gao J, Du J. Biomacromolecules, 2018, 19(6): 1701-1720. doi:10.1021/acs.biomac.8b00208http://dx.doi.org/10.1021/acs.biomac.8b00208
Lam S J, O'Brien-Simpson N M, Pantarat N, Sulistio A, Wong E H H, Chen Y Y, Lenzo J C,Holden J A, Blencowe A, Reynolds E C. Nat Microbiol, 2016, 1(11): 16162. doi:10.1038/nmicrobiol.2016.162http://dx.doi.org/10.1038/nmicrobiol.2016.162
Fan Lingling(范玲玲), Li Binrui(黎槟瑞), Zhang Haowei(张浩伟), Fang Yan(方艳). Acta Polymerica Sinica(高分子学报), 2021, 52(3): 253-271. doi:10.11777/j.issn1000-3304.2020.20185http://dx.doi.org/10.11777/j.issn1000-3304.2020.20185
Yu Qian(于谦), Chen Hong(陈红). Acta Polymerica Sinica(高分子学报), 2020, 51(4): 319-325. doi:10.11777/j.issn1000-3304.2020.20031http://dx.doi.org/10.11777/j.issn1000-3304.2020.20031
Deng J, Zhao C, Wu Y. Chinese J Polym Sci, 2020, 38: 704-714. doi:10.1007/s10118-020-2372-3http://dx.doi.org/10.1007/s10118-020-2372-3
Karlsson A J, Pomerantz W C, Weisblum B, Gellman S H, Palecek S P. J Am Chem Soc, 2006, 128(39): 12630-12631. doi:10.1021/ja064630yhttp://dx.doi.org/10.1021/ja064630y
Zhang L, Parente J, Harris S M, Woods D E, Hancock R E W, Falla T J. Antimicrob Agents Chemother, 2005, 49(7): 2921. doi:10.1128/aac.49.7.2921-2927.2005http://dx.doi.org/10.1128/aac.49.7.2921-2927.2005
Hancock R E W, Sahl H G. Nat Biotechnol, 2006, 24(12): 1551-1557. doi:10.1038/nbt1267http://dx.doi.org/10.1038/nbt1267
Linklater D P, Baulin V A, Le Guével X, Fleury J B, Hanssen E, Nguyen T H P, Juodkazis S, Bryant G, Crawford R J, Stoodley P, Ivanova E P. Adv Mater, 2020, 32(52): 2005679. doi:10.1002/adma.202005679http://dx.doi.org/10.1002/adma.202005679
Miller K P, Wang L, Benicewicz B C, Decho A W. Chem Soc Rev, 2015, 44(21): 7787-7807. doi:10.1039/c5cs00041fhttp://dx.doi.org/10.1039/c5cs00041f
Nisar P, Ali N, Rahman L, Ali M, Shinwari Z K. JBIC J Biol Inorg Chem, 2019, 24(7): 929-941. doi:10.1007/s00775-019-01717-7http://dx.doi.org/10.1007/s00775-019-01717-7
Farrokhi Z, Ayati A, Kanvisi M, Sillanpaa M. J Appl Polym Sci, 2019, 136(4): 46997. doi:10.1002/app.46997http://dx.doi.org/10.1002/app.46997
Slavin Y N, Asnis J, Häfeli U O, Bach H. J Nanobiotechnol, 2017, 15(1): 65. doi:10.1186/s12951-017-0308-zhttp://dx.doi.org/10.1186/s12951-017-0308-z
Marambio-Jones C, Hoek E M V. J Nanopart Res, 2010, 12(5): 1531-1551. doi:10.1007/s11051-010-9900-yhttp://dx.doi.org/10.1007/s11051-010-9900-y
Sambhy V, MacBride M M, Peterson B R, Sen A. J Am Chem Soc, 2006, 128(30): 9798-9808. doi:10.1021/ja061442zhttp://dx.doi.org/10.1021/ja061442z
Wang Mingzhi(王明智), Du Jianzhong(杜建忠). Acta Polymerica Sinica(高分子学报), 2014, (9): 1183-1194. doi:10.11777/j.issn1000-3304.2014.14125http://dx.doi.org/10.11777/j.issn1000-3304.2014.14125
Deming T J. Chem Rev, 2016, 116(3): 786-808. doi:10.1021/acs.chemrev.5b00292http://dx.doi.org/10.1021/acs.chemrev.5b00292
Song Z, Han Z, Lv S, Chen C, Chen L, Yin L, Cheng J. Chem Soc Rev, 2017, 46(21): 6570-6599. doi:10.1039/c7cs00460ehttp://dx.doi.org/10.1039/c7cs00460e
Endo T, Yamada S. J Synth Org Chem Jpn, 2018, 76(6): 615-621. doi:10.5059/yukigoseikyokaishi.76.615http://dx.doi.org/10.5059/yukigoseikyokaishi.76.615
Cornel Erik J, Jiang J, Chen S, Du J. CCS Chem, 2020, 2: 2104-2125. doi:10.31635/ccschem.020.202000470http://dx.doi.org/10.31635/ccschem.020.202000470
Jiang Jinhui(江金辉), Zhu Yunqing(朱云卿), Du Jianzhong(杜建忠). Acta Chimica Sinica(化学学报), 2020, 78(8): 719-724. doi:10.6023/a20050162http://dx.doi.org/10.6023/a20050162
Su Z, Zhang R, Yan X Y, Guo Q Y, Huang J, Shan W, Liu Y, Liu T, Huang M, Cheng S Z D. Prog Polym Sci, 2020, 103: 101230. doi:10.1016/j.progpolymsci.2020.101230http://dx.doi.org/10.1016/j.progpolymsci.2020.101230
Zhao Y, Sakai F, Su L, Liu Y, Wei K, Chen G, Jiang M. Adv Mater, 2013, 25(37): 5215-5256. doi:10.1002/adma.201302215http://dx.doi.org/10.1002/adma.201302215
Liu D, Sun H, Xiao Y, Chen S, Cornel E J, Zhu Y, Du J. J Control Release, 2020, 326: 365-386. doi:10.1016/j.jconrel.2020.07.018http://dx.doi.org/10.1016/j.jconrel.2020.07.018
Ariga K, Nishikawa M, Mori T, Takeya J, Shrestha L K, Hill J P. Sci Technol Adv Mater, 2019, 20(1): 51-95. doi:10.1080/14686996.2018.1553108http://dx.doi.org/10.1080/14686996.2018.1553108
Xu J, Zhu J. Chinese J Polym Sci, 2019, 37: 744-759. doi:10.1007/s10118-019-2294-0http://dx.doi.org/10.1007/s10118-019-2294-0
Zou P, Chen W T, Sun T, Gao Y, Li L L, Wang H. Biomater Sci, 2020, 8(18): 4975-4996. doi:10.1039/d0bm00789ghttp://dx.doi.org/10.1039/d0bm00789g
Lombardi L, Falanga A, Del Genio V, Galdiero S. Pharmaceutics, 2019, 11(4): 166. doi:10.3390/pharmaceutics11040166http://dx.doi.org/10.3390/pharmaceutics11040166
Simonson A W, Aronson M R, Medina S H. Molecules, 2020, 25(12): 2751. doi:10.3390/molecules25122751http://dx.doi.org/10.3390/molecules25122751
Zhou C, Wang M, Zou K, Chen J, Zhu Y, Du J. ACS Macro Lett, 2013, 2(11): 1021-1025. doi:10.1021/mz400480zhttp://dx.doi.org/10.1021/mz400480z
Xi Y, Wang Y, Gao J, Xiao Y, Du J. ACS Nano, 2019, 13(12): 13645-13657. doi:10.1021/acsnano.9b03237http://dx.doi.org/10.1021/acsnano.9b03237
Wang M, Zhou C, Chen J, Xiao Y, Du J. Bioconjugate Chem, 2015, 26(4): 725-734. doi:10.1021/acs.bioconjchem.5b00061http://dx.doi.org/10.1021/acs.bioconjchem.5b00061
Zhou C, Yuan Y, Zhou P, Wang F, Hong Y, Wang N, Xu S, Du J. Biomacromolecules, 2017, 18(12): 4154-4162. doi:10.1021/acs.biomac.7b01209http://dx.doi.org/10.1021/acs.biomac.7b01209
Souza T G F, Ciminelli V S T, Mohallem N D S. J Phys Conf Ser, 2016, 733: 012039. doi:10.1088/1742-6596/733/1/012039http://dx.doi.org/10.1088/1742-6596/733/1/012039
Chen Y, Lam J W Y, Kwok R T K, Liu B, Tang B Z. Mater Horiz, 2019, 6(3): 428-433. doi:10.1039/c8mh01331dhttp://dx.doi.org/10.1039/c8mh01331d
Xi Y, Song T, Tang S, Wang N, Du J. Biomacromolecules, 2016, 17(12): 3922-3930. doi:10.1021/acs.biomac.6b01285http://dx.doi.org/10.1021/acs.biomac.6b01285
Nagarajan D, Roy N, Kulkarni O, Nanajkar N, Datey A, Ravichandran S, Thakur C, T S, Aprameya I V, Sarma S P, Chakravortty D, Chandra N. Sci Adv, 2019, 5(7): eaax1946. doi:10.1126/sciadv.aax1946http://dx.doi.org/10.1126/sciadv.aax1946
0
Views
250
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution