浏览全部资源
扫码关注微信
郑州大学化学学院 郑州 450001
Published:20 February 2023,
Published Online:17 November 2022,
Received:20 July 2022,
Accepted:08 October 2022
扫 描 看 全 文
侯森垚,郝修歌,姜辉等.铁、钴金属配合物催化1,3-二烯烃聚合研究进展[J].高分子学报,2023,54(02):186-205.
Hou Sen-yao,Hao Xiu-ge,Jiang Hui,et al.Progress in the Polymerization of 1,3-Diene Catalyzed by Fe and Co Metal Complexes[J].ACTA POLYMERICA SINICA,2023,54(02):186-205.
侯森垚,郝修歌,姜辉等.铁、钴金属配合物催化1,3-二烯烃聚合研究进展[J].高分子学报,2023,54(02):186-205. DOI: 10.11777/j.issn1000-3304.2022.22153.
Hou Sen-yao,Hao Xiu-ge,Jiang Hui,et al.Progress in the Polymerization of 1,3-Diene Catalyzed by Fe and Co Metal Complexes[J].ACTA POLYMERICA SINICA,2023,54(02):186-205. DOI: 10.11777/j.issn1000-3304.2022.22153.
1
3-二烯烃类单体聚合物性能优异,在橡胶工业中占据重要地位. 以1
3-丁二烯为单体的顺丁橡胶在工业中可生产多种橡胶制品,以异戊二烯为单体的异戊橡胶因其结构与天然橡胶相似,在一些领域可替代天然橡胶. 1
3-二烯类聚烯烃材料的发展大大依赖于聚烯烃催化剂的不断创新. 在过去的10年中,铁、钴催化剂因其原材料廉价、配位类型丰富、合成简便、性质稳定等优良特性受到了广泛关注. 通过对催化剂的配体结构进行合理设计和调整,能控制聚合物的微观结构、分子量,从而改变聚合产物的性能. 本文综述了近10年来铁、钴配合物催化1
3-二烯烃聚合的研究进展,详细讨论了催化剂结构对催化活性、聚合物分子量、聚合物微观结构和聚合物分子量分布的影响.
Polymers of 1
3-diene monomers have excellent properties and play an important role in rubber industry. Polymers of 1
3-diene monomers is synthesized from 1
3-butadiene
and it can be fabricated into a variety of rubber products
while isoprene rubber can replace natural rubber in some fields due to its similar chemical structure with natural rubber. The key to the polymerization of 1
3-diene monomers is the catalyst. In the past decade
iron and cobalt catalysts have received much attention due to their excellent properties such as inexpensive raw materials
abundant ligand types
simple synthesis and stable properties. Rational design and synthesis of the catalyst structures has enabled good control over the stereoselectivity
molecular weight
and thus improve their performance of the polymerization product. This paper reviews the research progress of iron and cobalt complex-catalyzed 1
3-diene polymerization in the last decade and discusses in detail the influence of catalyst structure on catalytic activity
polymer molecular weight
polymer microstructure and polymer molecular weight dispersity.
铁配合物钴配合物13-二烯异戊二烯13-丁二烯
Iron complexesCobalt complexes13-DieneIsoprene13-Butadiene
Prasertsri S.; Rattanasom N. Fumed and precipitated silica reinforced natural rubber composites prepared from latex system: mechanical and dynamic properties. Polym. Test., 2012, 31(5), 593-605. doi:10.1016/j.polymertesting.2012.03.003http://dx.doi.org/10.1016/j.polymertesting.2012.03.003
Wang Y. X.; Ma J. H.; Zhang L. Q.; Wu Y. P. Revisiting the correlations between wet skid resistance and viscoelasticity of rubber composites via comparing carbon black and silica fillers. Polym. Test., 2011, 30(5), 557-562. doi:10.1016/j.polymertesting.2011.04.009http://dx.doi.org/10.1016/j.polymertesting.2011.04.009
Horne S. E.; Kiehl J. P.; Shipman J. J.; Folt V. L.; Gibbs C. F.; Willson E. A.; Newton E. B.; Reinhart M. A. Ameripol SN—a cis-1,4-polyisoprene. Ind. Eng. Chem., 1956, 48(4), 784-791. doi:10.1021/ie50556a033http://dx.doi.org/10.1021/ie50556a033
张希. 橡胶弹性模型的新进展. 高分子学报, 2022, 53(5), 441-444. doi:10.11777/j.issn1000-3304.2022.22n10http://dx.doi.org/10.11777/j.issn1000-3304.2022.22n10
Ricci G.; Sommazzi A.; Masi F.; Ricci M.; Boglia A.; Leone G. Well-defined transition metal complexes with phosphorus and nitrogen ligands for 1,3-dienes polymerization. Coord. Chem. Rev., 2010, 254(5-6), 661-676. doi:10.1016/j.ccr.2009.09.023http://dx.doi.org/10.1016/j.ccr.2009.09.023
Bonnet F.; Dyer H. E.; El Kinani Y.; Dietz C.; Roussel P.; Bria M.; Visseaux M.; Zinck P.; Mountford P. Bis(phenolate)amine-supported lanthanide borohydride complexes for styrene and trans-1, 4-isoprene (co-) polymerisations. Dalton Trans., 2015, 44(27), 12312-12325. doi:10.1039/c5dt00252dhttp://dx.doi.org/10.1039/c5dt00252d
Wang B. L.; Cui D. M.; Lv K. Highly 3,4-selective living polymerization of isoprene with rare earth metal fluorenyl N-heterocyclic carbene precursors. Macromolecules, 2008, 41(6), 1983-1988. doi:10.1021/ma702505nhttp://dx.doi.org/10.1021/ma702505n
Noguchi H.; Kambara S. New catalyst systems for the polymerization of conjugated dienes. J. Polym. Sci. B Polym. Lett., 1964, 2(6), 593-596. doi:10.1002/pol.1964.110020605http://dx.doi.org/10.1002/pol.1964.110020605
Champouret Y.; Hashmi O. H.; Visseaux M. Discrete iron-based complexes: Applications in homogeneous coordination-insertion polymerization catalysis. Coord. Chem. Rev., 2019, 390, 127-170. doi:10.1016/j.ccr.2019.03.015http://dx.doi.org/10.1016/j.ccr.2019.03.015
Porri L.; Giarrusso A.; Ricci G. Recent views on the mechanism of diolefin polymerization with transition metal initiator systems. Prog. Polym. Sci., 1991, 16(2-3), 405-441. doi:10.1016/0079-6700(91)90024-fhttp://dx.doi.org/10.1016/0079-6700(91)90024-f
Nomura K.; Liu J. Y. Half-titanocenes for precise olefinpolymerisation: Effects of ligand substituents and some mechanistic aspects. Dalton Trans., 2011, 40(30), 7666-7682. doi:10.1039/c1dt10086fhttp://dx.doi.org/10.1039/c1dt10086f
Benvenuta-Tapia J. J.; Tenorio-López J. A.; Herrera-Nájera R.; Ríos-Guerrero L. Microstructure-thermal property relationship of high trans-1,4-poly(butadiene) produced by anionic polymerization of 1,3-butadiene using an initiator composed of alkyl aluminum, lithiumn-butyl, and alkoxideBarium. Polym. Eng. Sci., 2009, 49(1), 1-10. doi:10.1002/pen.21259http://dx.doi.org/10.1002/pen.21259
Gong D. R.; Dong W. M.; Hu J. C.; Zhang X. Q.; Jiang L. S. Living polymerization of 1,3-butadiene by a Ziegler-Natta type catalyst composed of iron(III) 2-ethylhexanoate, triisobutylaluminum and diethyl phosphite. Polymer, 2009, 50(13), 2826-2829. doi:10.1016/j.polymer.2009.04.038http://dx.doi.org/10.1016/j.polymer.2009.04.038
Monteil, V.; Bastero, A.; Mecking, S. 1,2-polybutadiene latices by catalytic polymerization in aqueous emulsion. Macromolecules, 2005, 38(13), 5393-5399. doi:10.1021/ma050621ihttp://dx.doi.org/10.1021/ma050621i
Natta G.; Corradini P. The structure of crystalline 1,2-polybutadiene and of other “syndyotactic polymers”. J. Polym. Sci., 1956, 20(95), 251-266. doi:10.1002/pol.1956.120209503http://dx.doi.org/10.1002/pol.1956.120209503
Natta G.; Corradini P. Über Die kristallstrukturen des 1,4-cis-polybutadiens und des 1,4-cis-polyisoprens. Angew. Chem., 1956, 68(19), 615-616. doi:10.1002/ange.19560681905http://dx.doi.org/10.1002/ange.19560681905
Natta G.; Porri L.; Corradini P.; Morero D. Polimerizzazioni stereospecifiche di diolefine coniugate - Nota I. Sintesi e struttura di polidiolefine a concatenamento 1,4 trans. Chim. Ind. (Milano), 1958, 40, 362-373. doi:10.1016/b978-1-4831-9883-5.50071-4http://dx.doi.org/10.1016/b978-1-4831-9883-5.50071-4
Huang J. M.; Liu Z. H.; Cui D. M.; Liu X. L. Precisely controlled polymerization of styrene and conjugated dienes by group 3 single-site catalysts. ChemCatChem, 2018, 10(1), 42-61. doi:10.1002/cctc.201701090http://dx.doi.org/10.1002/cctc.201701090
Ricci G.; Italia S.; Porri L. Polymerization of 1,3-dienes with methylaluminoxanetriacetylacetonatovanadium. Macromol. Chem. Phys., 1994, 195(4), 1389-1397. doi:10.1002/macp.1994.021950422http://dx.doi.org/10.1002/macp.1994.021950422
Ricci, G.; Porri, L. Polymerization of 4-methyl-1,3-pentad iene with MAO/Ti(OnBu)4. The influence of preparation/ageing temperature upon the stereospecificity of the catalyst. Polymer, 1997, 38(17), 4499-4503. doi:10.1016/s0032-3861(96)00986-xhttp://dx.doi.org/10.1016/s0032-3861(96)00986-x
Zambelli A.; Ammendola P.; Proto A. Synthesis of syndiotactic poly-1,2-(4-methyl-1,3-pentadiene). Macromolecules, 1989, 22(5), 2126-2128. doi:10.1021/ma00195a020http://dx.doi.org/10.1021/ma00195a020
Suo H. Y.; Solan G. A.; Ma Y. P.; Sun W. H. Developments in compartmentalized bimetallic transition metal ethylene polymerization catalysts. Coord. Chem. Rev., 2018, 372, 101-116. doi:10.1016/j.ccr.2018.06.006http://dx.doi.org/10.1016/j.ccr.2018.06.006
Wang Z.; Solan G. A.; Zhang W. J.; Sun W. H. Carbocyclic-fused N,N,N-pincer ligands as ring-strain adjustable supports for iron and cobalt catalysts in ethylene oligo-/polymerization. Coord. Chem. Rev., 2018, 363, 92-108. doi:10.1016/j.ccr.2018.02.016http://dx.doi.org/10.1016/j.ccr.2018.02.016
Appukuttan V.; Zhang L.; Ha C. S.; Kim I. Highly active and stereospecific polymerizations of 1,3-butadiene by using bis(benzimidazolyl)amine ligands derived Co(II) complexes in combination with ethylaluminum sesquichloride. Polymer, 2009, 50(5), 1150-1158. doi:10.1016/j.polymer.2008.12.047http://dx.doi.org/10.1016/j.polymer.2008.12.047
Appukuttan V.; Zhang L.; Ha J. Y.; Chandran D.; Bahuleyan B. K.; Ha C. S.; Kim I. Stereospecific polymerizations of 1,3-butadiene catalyzed by Co(II) complexes ligated by 2,6-bis(benzimidazolyl)pyridines. J. Mol. Catal. A Chem., 2010, 325(1-2), 84-90. doi:10.1016/j.molcata.2010.04.002http://dx.doi.org/10.1016/j.molcata.2010.04.002
Cariou R.; Chirinos J. J.; Gibson V. C.; Jacobsen G.; Tomov A. K.; Britovsek G. J. P.; White A. J. P. The effect of the central donor in bis(benzimidazole)-based cobaltcatalysts for the selective cis-1,4-polymerisation of butadiene. Dalton Trans., 2010, 39(38), 9039-9045. doi:10.1039/c0dt00402bhttp://dx.doi.org/10.1039/c0dt00402b
Jie S. Y.; Ai P. F.; Li B. G. Highly active and stereospecific polymerization of 1,3-butadiene catalyzed by dinuclear cobalt(II) complexes bearing 3-aryliminomethyl-2-hydroxybenzaldehydes. Dalton Trans., 2011, 40(41), 10975-10982.
Gong D. R.; Wang B. L.; Cai H. G.; Zhang X. Q.; Jiang L. S. Synthesis, characterization and butadiene polymerization studies of cobalt(II) complexes bearing bisiminopyridine ligand. J. Organomet. Chem., 2011, 696(8), 1584-1590. doi:10.1016/j.jorganchem.2011.01.015http://dx.doi.org/10.1016/j.jorganchem.2011.01.015
Gong D. R.; Jia X. Y.; Wang B. L.; Zhang X. Q.; Jiang L. S. Synthesis, characterization, and butadiene polymerization of iron(III), iron(II) and cobalt(II) chlorides bearing 2,6-bis(2-benzimidazolyl)pyridyl or 2,6-bis(pyrazol)pyridine ligand. J. Organomet. Chem., 2012, 702, 10-18. doi:10.1016/j.jorganchem.2011.11.025http://dx.doi.org/10.1016/j.jorganchem.2011.11.025
Zhang J. S.; Gao W.; Lang X. M.; Wu Q. L.; Zhang L.; Mu Y. Ni(II) and Fe(II) complexes based on bis(imino)aryl pincer ligands: Synthesis, structural characterization and catalytic activities. Dalton Trans., 2012, 41(32), 9639-9645. doi:10.1039/c2dt30778bhttp://dx.doi.org/10.1039/c2dt30778b
Nobbs J. D.; Tomov A. K.; Cariou R.; Gibson V. C.; White A. J. P.; Britovsek G. J. P. Thio-Pybox and Thio-Phebox complexes of chromium, iron, cobalt and nickel and their application in ethylene and butadiene polymerisation catalysis. Dalton Trans., 2012, 41(19), 5949-5964. doi:10.1039/c2dt30324hhttp://dx.doi.org/10.1039/c2dt30324h
Chen L.; Ai P. F.; Gu J. M.; Jie S. Y.; Li B. G. Stereospecific polymerization of 1,3-butadiene catalyzed by cobalt complexes bearing N-containing diphosphine PNP ligands. J. Organomet. Chem., 2012, 716, 55-61. doi:10.1016/j.jorganchem.2012.05.051http://dx.doi.org/10.1016/j.jorganchem.2012.05.051
Ai P. F.; Chen L.; Guo Y. T.; Jie S. Y.; Li B. G. Polymerization of 1,3-butadiene catalyzed by cobalt(II) and nickel(II) complexes bearing imino- or amino-pyridyl alcohol ligands in combination with ethylaluminum sesquichloride. J. Organomet. Chem., 2012, 705, 51-58. doi:10.1016/j.jorganchem.2012.01.013http://dx.doi.org/10.1016/j.jorganchem.2012.01.013
Ai P. F.; Chen L.; Jie S. Y.; Li B. G. Polymerization of 1,3-butadiene catalyzed by ion-pair cobalt complexes with (benzimidazolyl)pyridine alcohol ligands. J. Mol. Catal. A Chem., 2013, 380, 1-9. doi:10.1016/j.molcata.2013.09.007http://dx.doi.org/10.1016/j.molcata.2013.09.007
Jia X. Y.; Liu H.; Hu Y. M.; Dai Q. Q.; Bi J. F.; Bai C. X.; Zhang X. Q. Highly active and cis-1,4 selective polymerization of 1,3-butadiene catalyzed by cobalt(II) complexes bearing α-diimine ligands. Chin. J. Catal., 2013, 34(8), 1560-1569. doi:10.1016/s1872-2067(12)60625-1http://dx.doi.org/10.1016/s1872-2067(12)60625-1
Wang B. L.; Gong D. R.; Bi J. F.; Dai Q. Q.; Zhang C. Y.; Hu Y. M.; Zhang X. Q.; Jiang L. S. Synthesis, characterization and 1,3-butadiene polymerization behaviors of cobalt complexes bearing 2-pyrazolyl-substituted 1,10-phenanthroline ligands. Appl. Organometal. Chem., 2013, 27(4), 245-252. doi:10.1002/aoc.2972http://dx.doi.org/10.1002/aoc.2972
Liu H.; Jia X. Y.; Wang F.; Dai Q. Q.; Wang B. L.; Bi J. F.; Zhang C. Y.; Zhao L. P.; Bai C. X.; Hu Y. M.; Zhang X. Q. Synthesis of bis(N-arylcarboximidoylchloride)pyridine cobalt(II) complexes and their catalytic behavior for 1,3-butadiene polymerization. Dalton Trans., 2013, 42(37), 13723-13732. doi:10.1039/c3dt51403jhttp://dx.doi.org/10.1039/c3dt51403j
Liu H.; Wang F.; Jia X. Y.; Liu L.; Bi J. F.; Zhang C. Y.; Zhao L. P.; Bai C. X.; Hu Y. M.; Zhang X. Q. Synthesis, characterization, and 1,3-butadiene polymerization studies of Co(II), Ni(II), and Fe(II) complexes bearing 2-(N-arylcarboximidoylchloride)quinoline ligand. J. Mol. Catal. A Chem., 2014, 391, 25-35. doi:10.1016/j.molcata.2014.04.008http://dx.doi.org/10.1016/j.molcata.2014.04.008
Liu H.; Wang F.; Liu L.; Dong B.; Zhang H. X.; Bai C. X.; Hu Y. M.; Zhang X. Q. Synthesis, characterization and 1,3-butadiene polymerization behaviors of three ONO, ONN, and tridentate Co(II) complexesNNN. Inorg. Chim. Acta, 2014, 421, 284-291. doi:10.1016/j.ica.2014.06.010http://dx.doi.org/10.1016/j.ica.2014.06.010
Wang G.; Jiang X. B.; Zhao W. Z.; Sun W. H.; Yao W.; He A. H. Catalytic behavior of Co(II) complexes with 2-(benzimidazolyl)-6-(1-(arylimino)ethyl)pyridine ligands on isoprene stereospecific polymerization. J. Appl. Polym. Sci., 2014, 131(1), 39703-39708. doi:10.1002/app.39703http://dx.doi.org/10.1002/app.39703
Gong D. R.; Wang B. L.; Jia X. Y.; Zhang X. Q. The enhanced catalytic performance of cobalt catalysts towards butadiene polymerization by introducing a labile donor in a salen ligand. Dalton Trans., 2014, 43(10), 4169-4178. doi:10.1039/c3dt52708ehttp://dx.doi.org/10.1039/c3dt52708e
Liu W.; Pan W. J.; Wang P.; Li W.; Mu J. S.; Weng G. S.; Jia X. Y.; Gong D. R.; Huang K. W. Synthesis of mixed-ligand cobalt complexes and their applications in high cis-1,4-selective butadiene polymerization. Inorg. Chim. Acta, 2015, 436, 132-138. doi:10.1016/j.ica.2015.07.033http://dx.doi.org/10.1016/j.ica.2015.07.033
Alnajrani M. N.; Mair F. S. The behaviour of β-triketimine cobalt complexes in the polymerization of isoprene. RSC Adv., 2015, 5(57), 46372-46385. doi:10.1039/c5ra06792hhttp://dx.doi.org/10.1039/c5ra06792h
Liu H.; Wang F.; Han C.; Zhang H. X.; Bai C. X.; Hu Y. M.; Zhang X. Q. Cobalt and nickel complexes supported by 2, 6-bis(imidate)pyridyl ligands: Synthesis, characterization, and 1,3-butadiene polymerization studies. Inorg. Chim. Acta, 2015, 434, 135-142. doi:10.1016/j.ica.2015.05.022http://dx.doi.org/10.1016/j.ica.2015.05.022
Lv S.; Jie S. Y.; Li B. G. Highly active and stereospecific polymerization of 1,3-butadiene catalyzed by bis{[2-(4,5-diphenylimidazolyl)phenylimino]phenolate}cobalt(II) complexes. J. Organomet. Chem., 2015, 799-800, 108-114.
Guo J.; Zhang C. Y.; Bi J. F.; Zhang H. X.; Bai C. X.; Hu Y. M.; Zhang X. Q. Cobalt complexes bearing pyridine-imino ligands with bulky aryl substituents: Synthesis, characterization, and 1,3-butadiene polymerization behaviors. J. Organomet. Chem., 2015, 798, 414-421. doi:10.1016/j.jorganchem.2015.05.004http://dx.doi.org/10.1016/j.jorganchem.2015.05.004
Gong D. R.; Liu W.; Pan W. J.; Chen T.; Jia X. Y.; Huang K. W.; Zhang X. Q. Tunable regioselectivity in 1,3-butadiene polymerization by using 2,6-bis(dimethyl-2-oxazolin-2-yl)pyridine incorporated transition metal (Cr, Fe and Co) catalysts. J. Mol. Catal. A Chem., 2015, 406, 78-84. doi:10.1016/j.molcata.2015.05.013http://dx.doi.org/10.1016/j.molcata.2015.05.013
Gong D. R.; Zhang X. Q.; Huang K. W. Regio- and stereo-selective polymerization of 1,3-butadiene catalyzed by phosphorus-nitrogen PN3-pincer cobalt(II) complexes. Dalton Trans., 2016, 45(48), 19399-19407.
Alnajrani M. N.; Alshmimri S. A.; Alsager O. A. α and β diimine cobalt complexes in isoprene polymerization: A comparative study. RSC Adv., 2016, 6(114), 113803-113814. doi:10.1039/c6ra23308bhttp://dx.doi.org/10.1039/c6ra23308b
Alnajrani M. N.; Mair F. S. Bidentate forms of β-triketimines: syntheses, characterization and outstanding performance of enamine-diimine cobalt complexes in isoprene polymerization. Dalton Trans., 2016, 45(25), 10435-10446. doi:10.1039/c6dt01064dhttp://dx.doi.org/10.1039/c6dt01064d
Wang X. X.; Fan L. L.; Huang C. B.; Liang T. L.; Guo C. Y.; Sun W. H. Highlycis-1,4 selective polymerization of isoprene promoted by α-diimine cobalt(II) chlorides. J. Polym. Sci. A Polym. Chem., 2016, 54(22), 3609-3615. doi:10.1002/pola.28247http://dx.doi.org/10.1002/pola.28247
Guo L. H.; Jing X. Y.; Xiong S. Y.; Liu W. J.; Liu Y. L.; Liu Z.; Chen C. L. Influences of alkyl and aryl substituents on iminopyridine Fe(II)- and Co(II)-catalyzed isoprene polymerization. Polymers, 2016, 8(11), 389-400. doi:10.3390/polym8110389http://dx.doi.org/10.3390/polym8110389
Zhu G. Q.; Zhang X. H.; Zhao M. M.; Wang L.; Jing C. Y.; Wang P.; Wang X. W.; Wang Q. G. Influences of fluorine substituents on iminopyridine Fe(II)- and Co(II)-catalyzed isoprene polymerization. Polymers, 2018, 10(9), 934. doi:10.3390/polym10090934http://dx.doi.org/10.3390/polym10090934
Chen H. F.; Pan W. J.; Huang K. W.; Zhang X. Q.; Gong D. R. Controlled polymerization of isoprene promoted by a type of hemilabile X=PN3 (X=O, S) ligand supported cobalt(ii) complexes: the role of a hemilabile donor on the level of control. Polym. Chem., 2017, 8(11), 1805-1814. doi:10.1039/c7py00252ahttp://dx.doi.org/10.1039/c7py00252a
Liu H.; Zhuang R.; Dong B.; Wang F.; Hu Y. M.; Zhang X. Q. Mono- and binuclear cobalt(II) complexes supported by quinoline-2-imidate ligands: Synthesis, characterization, and 1,3-butadiene polymerization. Chinese J. Polym. Sci., 2018, 36(8), 943-952. doi:10.1007/s10118-018-2097-8http://dx.doi.org/10.1007/s10118-018-2097-8
Fang L.; Zhao W. P.; Han C.; Liu H.; Hu Y. M.; Zhang X. Q. Isoprene polymerization with pyrazolylimine cobalt(II) complexes: Manipulation of 3,4-selectivities by ligand design and use of triphenylphosphine. Eur. J. Inorg. Chem., 2019, 2019, (5), 609-616. doi:10.1002/ejic.201801107http://dx.doi.org/10.1002/ejic.201801107
Fang L.; Zhao W. P.; Han C.; Zhang C. Y.; Liu H.; Hu Y. M.; Zhang X. Q. 1,3-Butadiene polymerizations catalyzed by cobalt and iron dichloride complexes bearing pyrazolylimine ligands. Chinese J. Polym. Sci., 2019, 37(5), 462-470. doi:10.1007/s10118-019-2198-zhttp://dx.doi.org/10.1007/s10118-019-2198-z
Tanaka R.; Ikeda K.; Nakayama Y.; Shiono T. Cis-1,4 specific polymerization of 1,3-butadiene using PNP-pincer ligated iron(II) complexes. Chem. Lett., 2019, 48(6), 525-528. doi:10.1246/cl.190115http://dx.doi.org/10.1246/cl.190115
Gong D. R.; Ying W. L.; Zhao J. Y.; Li W. X.; Xu Y. C.; Luo Y. J.; Zhang X. Q.; Capacchione C.; Grassi A. Controlling external diphenylcyclohexylphosphine feeding to achieve cis-1,4-syn-1,2 sequence controlled polybutadienes via cobalt catalyzed 1,3-butadiene polymerization. J. Catal., 2019, 377, 367-377. doi:10.1016/j.jcat.2019.07.025http://dx.doi.org/10.1016/j.jcat.2019.07.025
Wang F.; Liu H.; Hu Y. M.; Zhang X. Q. Influence of imine-carbon substituent in 6-bromo-2-iminopyridine-based cobalt(II) complexes on 1,3-butadiene polymerization. Polym. Int., 2019, 68(8), 1484-1491. doi:10.1002/pi.5854http://dx.doi.org/10.1002/pi.5854
Zhu G. Q.; Wang L.; Mahmood Q.; Zhou L.; Wang Q. G. Ligand-regulated polymerization of conjugated dienes catalyzed by confined iminopyridine iron complexes with high activity and thermal stability. Polym. Test., 2021, 102,107317. doi:10.1016/j.polymertesting.2021.107317http://dx.doi.org/10.1016/j.polymertesting.2021.107317
Chen X. M.; Huang L. C.; Gao W. One-pot synthesis of cobalt complexes with 2,6-bis(arylimino)phenoxyl/phenthioxyl ligands and catalysis on isoprene polymerization. Dalton Trans., 2021, 50(15), 5218-5225. doi:10.1039/d1dt00371bhttp://dx.doi.org/10.1039/d1dt00371b
Liu L. J.; Wang F.; Zhang C. Y.; Liu H.; Wu G. F.; Zhang X. Q. Thermally robust α-diimine nickel and cobalt complexes for cis-1,4 selective 1,3-butadiene polymerizations. Mol. Catal., 2022, 517, 112044. doi:10.1016/j.mcat.2021.112044http://dx.doi.org/10.1016/j.mcat.2021.112044
Gong D. R.; Wang B. L.; Bai C. X.; Bi J. F.; Wang F.; Dong W. M.; Zhang X. Q.; Jiang L. S. Metal dependent control of cis-/trans-1,4 regioselectivity in 1,3-butadiene polymerization catalyzed by transition metal complexes supported by 2,6-bis[1-(iminophenyl)ethyl]pyridine. Polymer, 2009, 50(26), 6259-6264. doi:10.1016/j.polymer.2009.10.054http://dx.doi.org/10.1016/j.polymer.2009.10.054
Gong D. R.; Jia X. Y.; Wang B. L.; Wang F.; Zhang C. Y.; Zhang X. Q.; Jiang L. S.; Dong W. M. Highly trans-1,4 selective polymerization of 1,3-butadiene initiated by iron(III) bis(imino)pyridyl complexes. Inorg. Chim. Acta, 2011, 373(1), 47-53. doi:10.1016/j.ica.2011.03.047http://dx.doi.org/10.1016/j.ica.2011.03.047
Wang B. L.; Bi J. F.; Zhang C. Y.; Dai Q. Q.; Bai C. X.; Zhang X. Q.; Hu Y. M.; Jiang L. S. Highly active and trans-1,4 specific polymerization of 1,3-butadiene catalyzed by 2-pyrazolyl substituted 1,10-phenanthroline ligated iron (II) complexes. Polymer, 2013, 54(19), 5174-5181. doi:10.1016/j.polymer.2013.07.021http://dx.doi.org/10.1016/j.polymer.2013.07.021
Zhang X. H.; Zhu G. Q.; Mahmood Q.; Zhao M. M.; Wang L.; Jing C. Y.; Wang X. W.; Wang Q. G. Iminoimidazole-based Co(II) and Fe(II) complexes: syntheses, characterization, and catalytic behaviors for isoprene polymerization. J. Polym. Sci. A Polym. Chem., 2019, 57(7), 767-775. doi:10.1002/pola.29323http://dx.doi.org/10.1002/pola.29323
Zhao M. M.; Wang L.; Mahmood Q.; Jing C. Y.; Zhu G. Q.; Zhang X. H.; Wang X. W.; Wang Q. G. Controlled isoprene polymerization mediated by iminopyridine-iron (II) acetylacetonate pre-catalysts. Appl. Organomet. Chem., 2019, 33(4), e4836. doi:10.1002/aoc.4836http://dx.doi.org/10.1002/aoc.4836
Lin W. H.; Zhang L. P.; Suo H. Y.; Vignesh A.; Yousuf N.; Hao X.; Sun W. H. Synthesis of characteristic polyisoprenes using rationally designed iminopyridyl metal (Fe and Co) precatalysts: investigation of co-catalysts and steric influence on their catalytic activity. New J. Chem., 2020, 44(19), 8076-8084. doi:10.1039/d0nj00942chttp://dx.doi.org/10.1039/d0nj00942c
Hashmi O. H.; Visseaux M.; Champouret Y. Evidence of coordinative chain transfer polymerization of isoprene using iron iminopyridine/ZnEt2 catalytic systems. Polym. Chem., 2021, 12(32), 4626-4631. doi:10.1039/d1py00433fhttp://dx.doi.org/10.1039/d1py00433f
Gong D. R.; Dong W. M.; Hu Y. M.; Bi J. F.; Zhang X. Q.; Jiang L. S. Syndiotactically enriched 1,2-selective polymerization of 1, 3-butadiene initiated by iron catalysts based on a new class of donors. Polymer, 2009, 50(25), 5980-5986. doi:10.1016/j.polymer.2009.10.060http://dx.doi.org/10.1016/j.polymer.2009.10.060
Jia, X. Y.; Zhang, X. Q.; Gong, D. R. 1, 2 Enriched polymerization of isoprene by cobalt complex carrying aminophosphory fused (PN3) ligand. J. Polym. Sci. A Polym. Chem., 2018, 56(20), 2286-2293. doi:10.1002/pola.29201http://dx.doi.org/10.1002/pola.29201
Jing C. Y.; Wang L.; Zhu G. Q.; Hou H. B.; Zhou L.; Wang Q. G. Enhancing thermal stability in aminopyridine iron(II)-catalyzed polymerization of conjugated dienes. Organometallics, 2020, 39(22), 4019-4026. doi:10.1021/acs.organomet.0c00591http://dx.doi.org/10.1021/acs.organomet.0c00591
Hu W. H.; Xu Y. C.; Ying W. L.; Hu Z. H.; Luo W. W.; Tang F. M.; Huang W. Z.; Jia X. Y.; Gong D. R. 1,2-Syndiotactic polymerization of butadiene catalyzed by iron (III) acetylacetonate in combination with exogenous phosphate. Mol. Catal., 2020, 497, 111219. doi:10.1016/j.mcat.2020.111219http://dx.doi.org/10.1016/j.mcat.2020.111219
Jiang X. B.; Wen X. L.; Sun W. H.; He A. H. Polymerization of isoprene catalyzed by 2-(methyl-2-benzimidazolyl)-6-(1-(arylimino) ethyl) pyridine iron(III) trichloride with an additional donor. J. Polym. Sci. A Polym. Chem., 2014, 52(17), 2395-2398. doi:10.1002/pola.27267http://dx.doi.org/10.1002/pola.27267
Jing C. Y.; Wang L.; Mahmood Q.; Zhao M. M.; Zhu G. Q.; Zhang X. H.; Wang X. W.; Wang Q. G. Synthesis and characterization of aminopyridine iron(ii) chloride catalysts for isoprene polymerization: sterically controlled monomer enchainment. Dalton Trans., 2019, 48(22), 7862-7874. doi:10.1039/c9dt00452ahttp://dx.doi.org/10.1039/c9dt00452a
Wang L.; Wang X. W.; Hou H. B.; Zhu G. Q.; Han Z. Y.; Yang W. Y.; Chen X.; Wang Q. G. An unsymmetrical binuclear iminopyridine-iron complex and its catalytic isoprene polymerization. Chem. Commun. (Camb), 2020, 56(62), 8846-8849. doi:10.1039/d0cc04122jhttp://dx.doi.org/10.1039/d0cc04122j
Ricci G.; Leone G.; Zanchin G.; Palucci B.; Boccia A. C.; Sommazzi A.; Masi F.; Zacchini S.; Guelfi M.; Pampaloni G. Highly stereoregular 1,3-butadiene and isoprene polymers through monoalkyl-N-aryl-substituted iminopyridine iron complex-based catalysts: synthesis and characterization. Macromolecules, 2021, 54(21), 9947-9959. doi:10.1021/acs.macromol.1c01291http://dx.doi.org/10.1021/acs.macromol.1c01291
Raynaud J.; Wu J. Y.; Ritter T. Iron-catalyzed polymerization of isoprene and other 1,3-dienes. Angew. Chem. Int. Ed Engl., 2012, 51(47), 11805-11808. doi:10.1002/anie.201205152http://dx.doi.org/10.1002/anie.201205152
Hashmi O. H.; Champouret Y.; Visseaux M. Highly active iminopyridyl iron-based catalysts for the polymerization of isoprene. Molecules, 2019, 24(17), 3024. doi:10.3390/molecules24173024http://dx.doi.org/10.3390/molecules24173024
Ricci G.; Leone G.; Zanchin G.; Palucci B.; Forni A.; Sommazzi A.; Masi F.; Zacchini S.; Guelfi M.; Pampaloni G. Some novel cobalt diphenylphosphine complexes: synthesis, characterization, and behavior in the polymerization of 1,3-butadiene. Molecules, 2021, 26(13), 4067. doi:10.3390/molecules26134067http://dx.doi.org/10.3390/molecules26134067
Hou J. Y.; Guo F.; Hu Q.; Li Y.; Hou Z. M. Neodymium-catalyzed polymerization of C5 fraction: efficient synthesis of 1,3-pentadiene-isoprene copolymer rubbers. Chinese J. Polym. Sci., 2019, 37(7), 674-680. doi:10.1007/s10118-019-2244-xhttp://dx.doi.org/10.1007/s10118-019-2244-x
郑文洁, 毕吉福, 丛日新, 王凤, 刘恒, 胡雁鸣, 张学全. Nd(vers)3/Al(i-Bu)2H/AlEt3/EASC体系催化丁二烯/异戊二烯及丁二烯/异戊二烯/月桂烯共聚合的研究. 高分子学报, 2021, 52(5), 541-548. doi:10.11777/j.issn1000-3304.2020.20287http://dx.doi.org/10.11777/j.issn1000-3304.2020.20287
田晶, 王胤然, 付洪然, 郭方. 单茂钪催化乙烯与共轭二烯烃共聚合的研究. 高分子学报, 2019, 50(8), 826-833. doi:10.11777/j.issn1000-3304.2019.19020http://dx.doi.org/10.11777/j.issn1000-3304.2019.19020
高欢, 邵平均, 李邦, 潘莉. 配位链转移聚合合成高密度聚乙烯-嵌段-等规聚丙烯嵌段共聚物. 高分子学报, 2021, 52(11), 1498-1505. doi:10.11777/j.issn1000-3304.2021.21125http://dx.doi.org/10.11777/j.issn1000-3304.2021.21125
汪骐远, 黄建铭, 李世辉, 崔冬梅. 羟基功能化高顺1,4-共轭双烯橡胶的合成. 高分子学报, 2022, 53(5), 474-481. doi:10.11777/j.issn1000-3304.2021.21312http://dx.doi.org/10.11777/j.issn1000-3304.2021.21312
杨科, 刘强, 文帅, 徐舒心, 施晨琦. 异丁烯与对氯甲基苯乙烯正离子共聚合研究. 高分子学报, 2020, 51(4), 355-365. doi:10.11777/j.issn1000-3304.2019.19179http://dx.doi.org/10.11777/j.issn1000-3304.2019.19179
陈敏, 陈昶乐. 官能团化聚烯烃: 新催化剂、新聚合调控手段、新材料. 高分子学报, 2018, (11), 1372-1384. doi:10.11777/j.issn1000-3304.2018.18155http://dx.doi.org/10.11777/j.issn1000-3304.2018.18155
0
Views
93
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution