浏览全部资源
扫码关注微信
有机无机复合材料国家重点实验室 生物医用材料(北京)实验室 北京化工大学生命科学与技术学院 北京 100029
Published:20 January 2023,
Published Online:17 September 2022,
Received:29 April 2022,
Accepted:20 June 2022
扫 描 看 全 文
喻青松,甘志华.纳米药物在非肌层浸润性膀胱癌灌注治疗中的应用[J].高分子学报,2023,54(01):1-13.
Yu Qing-song,Gan Zhi-hua.The Application of Nanomedicine in the Intravesical Instillation Therapy of Non-muscle Invasive Bladder Cancer[J].ACTA POLYMERICA SINICA,2023,54(01):1-13.
喻青松,甘志华.纳米药物在非肌层浸润性膀胱癌灌注治疗中的应用[J].高分子学报,2023,54(01):1-13. DOI: 10.11777/j.issn1000-3304.2022.22157.
Yu Qing-song,Gan Zhi-hua.The Application of Nanomedicine in the Intravesical Instillation Therapy of Non-muscle Invasive Bladder Cancer[J].ACTA POLYMERICA SINICA,2023,54(01):1-13. DOI: 10.11777/j.issn1000-3304.2022.22157.
膀胱癌是泌尿系统最常见的肿瘤之一,其中非肌层浸润性膀胱癌(NMIBC)占比高达75%以上. 鉴于单纯手术治疗后好复发、易进展的特点,多个指南均推荐手术切除结合术后灌注治疗作为其标准治疗方案. 化疗作为膀胱灌注治疗的主要手段,对NMIBC治疗具有重要意义. 然而,尿液稀释、膀胱排空以及药物直接暴露等多重因素限制,极大地制约了小分子化疗药物在膀胱灌注治疗中的应用. 为改善治疗过程的安全性和疗效,多种新型给药装置或技术相继被应用于NMIBC灌注治疗,但仍难以解决毒副作用难题. 随着纳米技术的发展,其在膀胱灌注治疗中的应用逐渐受到重视,为灌注治疗过程的安全性改善带来机遇. 本文简要总结了目前NMIBC临床治疗或临床研究中的用药方案及新兴给药技术,并对临床NMIBC灌注治疗中所使用的纳米递送技术进行了归纳. 进一步结合作者和国内外同行在膀胱灌注化疗纳米药物研究方面所开展的系列研究工作,对本领域的最新研究进展进行了总结,最后对膀胱灌注治疗纳米药物的发展趋势做出展望.
Bladder cancer is one of the most common tumors of the urinary system
among which non-muscle invasive bladder cancer (NMIBC) accounts for more than 75%. Given that NMIBC is prone to recurrence and progression after surgical treatment alone
multiple guidelines recommend surgical resection combined with postoperative perfusion therapy as its standard treatment. As a common drug type for intravesical instillation therapy
chemotherapeutics plays important roles in the treatment of NMIBC. However
due to the limitations such as urine dilution
bladder voiding
and direct drug exposure
the short bladder retention and high toxicity of small drugs greatly limit their application in intravesical instillation. In order to improve the safety and efficacy of small drugs
various new drug delivery devices or technologies have been applied in NMIBC therapy
but the problem of side effects of instillation therapy still cannot be solved. Nanotechnologies have also attracted substantial research interest due to their capacity to improve the safety and effectiveness of the instillation therapy. This article briefly summarizes the current new drugs and drug delivery technologies in clinical treatments of NMIBC. Along with the progresses made by themselves and some other research groups
the authors summarize the recent progresses of nanomedicines used in intravesical instillation therapy and make an outlook on the future prospects of such kind of nanomedicines.
癌症治疗非肌层浸润性膀胱癌膀胱灌注治疗纳米药物
Cancer therapyNon-muscle invasive bladder cancerIntravesical instillation chemotherapyNanomedicine
Zheng R, Zhang S, Zeng H, Wang S, Sun K, Chen R, Li L, Wei W, He J. Cancer incidence and mortality in China, 2016. J. Nat. Cancer Cent., 2022, 2, 1-9. doi:10.1016/j.jncc.2022.02.002http://dx.doi.org/10.1016/j.jncc.2022.02.002
郑荣寿, 孙可欣, 张思维, 曾红梅, 邹小农, 陈茹, 顾秀瑛, 魏文强, 赫捷. 2015年中国恶性肿瘤流行情况分析. 中华肿瘤杂志, 2019, 41, 19-28. doi:10.3760/cma.j.issn.0253-3766.2019.01.005http://dx.doi.org/10.3760/cma.j.issn.0253-3766.2019.01.005
Mertens L. S.; Neuzillet Y.; Horenblas S.; van Rhijn B. W. G. Landmarks in non-muscle-invasive bladder cancer. Nat. Rev. Urol., 2014, 11, 476-480. doi:10.1038/nrurol.2014.130http://dx.doi.org/10.1038/nrurol.2014.130
Chang S. S.; Boorjian S. A.; Chou R.; Clark P. E.; Daneshmand S.; Konety B. R.; Pruthi R.; Quale D. Z.; Ritch C. R.; Seigne J. D.; Skinner E. C.; Smith N. D.; McKiernan J. M. Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO guideline. J. Urol., 2016, 196, 1021-1029. doi:10.1016/j.juro.2016.06.049http://dx.doi.org/10.1016/j.juro.2016.06.049
Babjuk M.; Burger M.; Compérat E. M.; Gontero P.; Mostafid H. A.; Palou J.; van Rhijn B. W. G.; Rouprêt M.; Shariat S. F.; Sylvester R.; Zigeuner R.; Capoun O.; Cohen D.; Dominguez-Escrig J. L.; Hernández V.; Peyronnet B.; Seisen T.; Soukup V. European association of urology guidelines on non-muscle-invasive bladder cancer (TaT1 and carcinoma in situ)-2019 update. Eur. Urol. Suppl., 2019, 76, 639-657. doi:10.1016/j.eururo.2019.08.016http://dx.doi.org/10.1016/j.eururo.2019.08.016
中国肿瘤医院泌尿肿瘤协作组. 非肌层浸润性膀胱癌膀胱灌注治疗专家共识(2021版), 中华肿瘤杂志, 2021, 43, 1027-1033
Redelman-Sidi G.; Glickman M. S.; Bochner B. H. The mechanism of action of BCG therapy for bladder cancer—a current perspective. Nat. Rev. Urol., 2014, 11, 153-162. doi:10.1038/nrurol.2014.15http://dx.doi.org/10.1038/nrurol.2014.15
Shore N. D.; Palou Redorta J.; Robert G.; Hutson T. E.; Cesari R.; Hariharan S.; Rodríguez Faba Ó.; Briganti A.; Steinberg G. D. Non-muscle-invasive bladder cancer: An overview of potential new treatment options. Urol. Oncol. Semin. Orig. Investig., 2021, 39, 642-663. doi:10.1016/j.urolonc.2021.05.015http://dx.doi.org/10.1016/j.urolonc.2021.05.015
Bree K. K.; Brooks N. A.; Kamat A. M. Current therapy and emerging intravesical agents to treat non-muscle invasive bladder cancer. Oncol. Clin. N Am, 2021, 35, 513-529. doi:10.1016/j.hoc.2021.02.003http://dx.doi.org/10.1016/j.hoc.2021.02.003
Joice G. A.; Bivalacqua T. J.; Kates M. Optimizing pharmacokinetics of intravesical chemotherapy for bladder cancer. Nat. Rev. Urol., 2019, 16, 599-612. doi:10.1038/s41585-019-0220-4http://dx.doi.org/10.1038/s41585-019-0220-4
Lammers R. J. M.; Witjes J. A.; Inman B. A.; Leibovitch I.; Laufer M.; Nativ O.; Colombo R. The role of a combined regimen with intravesical chemotherapy and hyperthermia in the management of non-muscle-invasive bladder cancer: a systematic review. Eur. Urol., 2011, 60, 81-93. doi:10.1016/j.eururo.2011.04.023http://dx.doi.org/10.1016/j.eururo.2011.04.023
van Valenberg F. J. P.; van der Heijden A. G.; Lammers R. J. M.; Falke J.; Arends T. J. H.; Oosterwijk E.; Witjes J. A. Intravesical radiofrequency induced hyperthermia enhances mitomycin C accumulation in tumour tissue. Int. J. Hyperth., 2018, 34, 988-993. doi:10.1080/02656736.2017.1406618http://dx.doi.org/10.1080/02656736.2017.1406618
Colombo R.; Salonia A.; Leib Z.; Pavone-Macaluso M.; Engelstein D. Long-term outcomes of a randomized controlled trial comparing thermochemotherapy with mitomycin-C alone as adjuvant treatment for non-muscle-invasive bladder cancer (NMIBC). BJU Int., 2011, 107, 912-918. doi:10.1111/j.1464-410x.2010.09654.xhttp://dx.doi.org/10.1111/j.1464-410x.2010.09654.x
di Stasi, S M.; Giannantoni A.; Massoud R.; Dolci S.; Navarra P.; Vespasiani G.; Stephen R. L. Electromotive versus passive diffusion of mitomycin C into human bladder wall: concentration-depth profiles studies. Cancer Res., 1999, 59, 4912-4918.
di Stasi S. M.; Giannantoni A.; Stephen R. L.; Capelli G.; Navarra P.; Massoud R.; Vespasiani G. Intravesical electromotive mitomycin C versus passive transport mitomycin C for high risk superficial bladder cancer: a prospective randomized study. J. Urol., 2003, 170, 777-782. doi:10.1097/01.ju.0000080568.91703.18http://dx.doi.org/10.1097/01.ju.0000080568.91703.18
Daneshmand S.; Pohar K. S.; Steinberg G. D.; Aron M.; Cutie C. Effect of GemRIS (gemcitabine-releasing intravesical system, TAR-200) on antitumor activity in muscle-invasive bladder cancer (MIBC). J. Clin. Oncol., 2017, 35, e16000. doi:10.1200/jco.2017.35.15_suppl.e16000http://dx.doi.org/10.1200/jco.2017.35.15_suppl.e16000
Friedman B.; Dekel Y.; Tubaro A.; Sidi A. M.; Shalva B.; Baniel J.; Kedar D.; Colombo L.; Engelshtein D.; Fridman E.; Klein I.; Jeshurun M.; Nerotski B.; Zolotrayov D.; Malchi N.; Palou Redorta J.; Wirth G.; Leibovitch I.; Witjes F. Pd11-05 the chemoablative effect of vesigel instillation in patients with nmibc - preliminary results. J. Urol., 2016, 195, e289-e290. doi:10.1016/j.juro.2016.02.845http://dx.doi.org/10.1016/j.juro.2016.02.845
Lenis A.; Chamie K.; Friedman B.; Tubaro A.; Sidi A. M.; Kedar D.; Colombo L.; Engelstein D.; Palau J.; Wirth G.; Leibovitch I.; Fridman E.; Klein I.; Jeshurun M.; Witjes F. Pd19-10 the chemoablative effect of vesigel instillation in patients with nmibc - response rate and 1-year durability. J. Urol., 2017, 197, e368-e369. doi:10.1016/j.juro.2017.02.883http://dx.doi.org/10.1016/j.juro.2017.02.883
孙瑞, 邱娜莎, 申有青. 高分子抗肿瘤纳米药物的挑战与发展. 高分子学报, 2019, 50, 588-601. doi:10.11777/j.issn1000-3304.2019.19005http://dx.doi.org/10.11777/j.issn1000-3304.2019.19005
Hurle R.; Guazzoni G.; Colombo P.; Santoro A.; de Cobelli O.; Trapani E. D.; Nohales G.; Carlos L.; Duran-Merino R.; Lazzeri M. Oncofid-P-B: A novel treatment for BCG unresponsive carcinoma in situ (CIS) of the bladder: results of a prospective european multicentre study at 15 months from treatment start. Urol. Oncol. Semin. Orig. Investig., 2022, 40, 11.e9-11.e15. doi:10.1016/j.urolonc.2021.07.007http://dx.doi.org/10.1016/j.urolonc.2021.07.007
Ye L.; Letchford K.; Heller M.; Liggins R.; Guan D. C.; Kizhakkedathu J. N.; Brooks D. E.; Jackson J. K.; Burt H. M. Synthesis and characterization of carboxylic acid conjugated, hydrophobically derivatized, hyperbranched polyglycerols as nanoparticulate drug carriers for cisplatin. Biomacromolecules, 2011, 12, 145-155. doi:10.1021/bm101080phttp://dx.doi.org/10.1021/bm101080p
Huang C.; Neoh K. G.; Xu L. Q.; Kang E. T.; Chiong E. Polymeric nanoparticles with encapsulated superparamagnetic iron oxide and conjugated cisplatin for potential bladder cancer therapy. Biomacromolecules, 2012, 13, 2513-2520. doi:10.1021/bm300739whttp://dx.doi.org/10.1021/bm300739w
Kates M.; Date A.; Yoshida T.; Afzal U.; Kanvinde P.; Babu T.; Sopko N. A.; Matsui H.; Hahn N. M.; McConkey D. J.; Baras A.; Hanes J.; Ensign L.; Bivalacqua T. J. Preclinical evaluation of intravesical cisplatin nanoparticles for non-muscle-invasive bladder cancer. Clin. Cancer Res., 2017, 23, 6592-6601. doi:10.1158/1078-0432.ccr-17-1082http://dx.doi.org/10.1158/1078-0432.ccr-17-1082
Tan P.; Cai H.; Wei Q.; Tang X.; Zhang Q.; Kopytynski M.; Yang, J,; Yi, Y.; Zhang, H.; Gong, Q.; Gu, Z.; Chen, R.; Luo, K. Enhanced chemo-photodynamic therapy of an enzyme-responsive prodrug in bladder cancer patient-derived xenograft models. Biomaterials, 2021, 277, 121061. doi:10.1016/j.biomaterials.2021.121061http://dx.doi.org/10.1016/j.biomaterials.2021.121061
Sun P. J.; Zhou D. H.; Gan Z. H. Novel reduction-sensitive micelles for triggered intracellular drug release. J. Control. Release, 2011, 155, 96-103. doi:10.1016/j.jconrel.2010.11.005http://dx.doi.org/10.1016/j.jconrel.2010.11.005
Zhou D. H.; Zhang J.; Zhang G.; Gan Z. H. Effect of surface charge of polymeric micelles on in vitro cellular uptake. Chinese J. Polym. Sci., 2013, 31, 1299-1309. doi:10.1007/s10118-013-1332-6http://dx.doi.org/10.1007/s10118-013-1332-6
Kaldybekov D. B.; Filippov S. K.; Radulescu A.; Khutoryanskiy V. V. Maleimide-functionalised PLGA-PEG nanoparticles as mucoadhesive carriers for intravesical drug delivery. Eur. J. Pharm. Biopharm., 2019, 143, 24-34. doi:10.1016/j.ejpb.2019.08.007http://dx.doi.org/10.1016/j.ejpb.2019.08.007
Vila-Caballer M.; Codolo G.; Munari F.; Malfanti A.; Fassan M.; Rugge M.; Balasso A.; de Bernard M.; Salmaso S. A pH-sensitive stearoyl-PEG-poly(methacryloyl sulfadimethoxine)-decorated liposome system for protein delivery: an application for bladder cancer treatment. J. Control. Release, 2016, 238, 31-42. doi:10.1016/j.jconrel.2016.07.024http://dx.doi.org/10.1016/j.jconrel.2016.07.024
Erdogar N.; İskit A. B.; Eroglu H.; Sargon M. F.; Mungan N. A.; Bilensoy E. Cationic core-shell nanoparticles for intravesical chemotherapy in tumor-induced rat model: safety and efficacy. Int. J. Pharm., 2014, 471, 1-9. doi:10.1016/j.ijpharm.2014.05.014http://dx.doi.org/10.1016/j.ijpharm.2014.05.014
Ali M. S.; Metwally A. A.; Fahmy R. H.; Osman R. Chitosan-coated nanodiamonds: Mucoadhesive platform for intravesical delivery of doxorubicin. Carbohydr. Polym., 2020, 245, 116528. doi:10.1016/j.carbpol.2020.116528http://dx.doi.org/10.1016/j.carbpol.2020.116528
Lu S. J.; Xu L. Q.; Kang E. T.; Mahendran R.; Chiong E.; Neoh K. G. Co-delivery of peptide-modified cisplatin and doxorubicin via mucoadhesive nanocapsules for potential synergistic intravesical chemotherapy of non-muscle-invasive bladder cancer. Eur. J. Pharm. Sci., 2016, 84, 103-115. doi:10.1016/j.ejps.2016.01.013http://dx.doi.org/10.1016/j.ejps.2016.01.013
Wang B. L.; Zhang K. B.; Wang J. D.; Zhao R. B.; Zhang Q.; Kong X. D. Poly(amidoamine)-modified mesoporous silica nanoparticles as a mucoadhesive drug delivery system for potential bladder cancer therapy. Colloids Surf. B Biointerfaces, 2020, 189, 110832. doi:10.1016/j.colsurfb.2020.110832http://dx.doi.org/10.1016/j.colsurfb.2020.110832
Mugabe C.; Matsui Y.; So A. I.; Gleave M. E.; Baker J. H. E.; Minchinton A. I.; Manisali I.; Liggins R.; Brooks D. E.; Burt H. M. In vivo evaluation of mucoadhesive nanoparticulate docetaxel for intravesical treatment of non-muscle-invasive bladder cancer. Clin. Cancer Res., 2011, 17, 2788-2798. doi:10.1158/1078-0432.ccr-10-2981http://dx.doi.org/10.1158/1078-0432.ccr-10-2981
Guo H.; Li F. P.; Qiu H. P.; Xu W. G.; Li P. Q.; Hou Y. C.; Ding J. X.; Chen X. S. Synergistically enhanced mucoadhesive and penetrable polypeptide nanogel for efficient drug delivery to orthotopic bladder cancer. Research, 2020, 2020, 1-14. doi:10.34133/2020/8970135http://dx.doi.org/10.34133/2020/8970135
Guo H.; Xu W. G.; Chen J. J.; Yan L. S.; Ding J. X.; Hou Y. C.; Chen X. S. Positively charged polypeptide nanogel enhances mucoadhesion and penetrability of 10-hydroxycamptothecin in orthotopic bladder carcinoma. J. Control. Release, 2017, 259, 136-148. doi:10.1016/j.jconrel.2016.12.041http://dx.doi.org/10.1016/j.jconrel.2016.12.041
Guo H.; Li F. P.; Xu W. G.; Chen J. J.; Hou Y. C.; Wang C. X.; Ding J. X.; Chen X. S. Mucoadhesive cationic polypeptide nanogel with enhanced penetration for efficient intravesical chemotherapy of bladder cancer. Adv. Sci., 2018, 5, 1800004. doi:10.1002/advs.201800004http://dx.doi.org/10.1002/advs.201800004
汤朝晖, 陈学思. 聚谷氨酸接枝聚乙二醇抗肿瘤药物靶向输送系统. 高分子学报, 2019, 50, 543-552. doi:10.11777/j.issn1000-3304.2019.19036http://dx.doi.org/10.11777/j.issn1000-3304.2019.19036
Mun E. A.; Williams A. C.; Khutoryanskiy V. V. Adhesion of thiolated silica nanoparticles to urinary bladder mucosa: Effects of PEGylation, thiol content and particle size. Int. J. Pharm., 2016, 512, 32-38. doi:10.1016/j.ijpharm.2016.08.026http://dx.doi.org/10.1016/j.ijpharm.2016.08.026
Wang S.; Jin S.; Li G.; Xu M.; Deng D.; Xiao Z.; Sun H.; Zhang S.; Zhang E.; Xie L.; Li G.; Dai Y.; Liu Z.; Shu Q.; Wu S. Transmucosal delivery of self-assembling photosensitizer-nitazoxanide nanocomplexes with fluorinated chitosan for instillation-based photodynamic therapy of orthotopic bladder tumors. ACS Biomater. Sci. Eng., 2021, 7, 1485-1495. doi:10.1021/acsbiomaterials.0c01786http://dx.doi.org/10.1021/acsbiomaterials.0c01786
Li G.; Yuan S.; Deng D.; Ou T.; Li Y.; Sun R.; Lei Q.; Wang X.; Shen W.; Cheng Y.; Liu Z.; Wu S. Fluorinated polyethylenimine to enable transmucosal delivery of photosensitizer-conjugated catalase for photodynamic therapy of orthotopic bladder tumors postintravesical instillation. Adv. Funct. Mater., 2019, 29(40), 1901932. doi:10.1002/adfm.201901932http://dx.doi.org/10.1002/adfm.201901932
Li G.; Lei Q.; Wang F.; Deng D.; Wang S.; Tian L.; Shen W.; Cheng Y.; Liu Z.; Wu S. Fluorinated polymer mediated transmucosal peptide delivery for intravesical instillation therapy of bladder cancer. Small, 2019, 15, 1900936. doi:10.1002/smll.201900936http://dx.doi.org/10.1002/smll.201900936
Hortelão A. C.; Carrascosa R.; Murillo-Cremaes N.; Patiño T.; Sánchez S. Targeting 3D bladder cancer spheroids with urease-powered nanomotors. ACS Nano, 2019, 13, 429-439. doi:10.1021/acsnano.8b06610http://dx.doi.org/10.1021/acsnano.8b06610
Lin T, Yuan A, Zhao X, Lian H, Zhuang J, Chen W, Zhang Q, Liu G, Zhang S, Chen W, Cao W, Zhang C, Wu J, Hu Y, Guo H. Self-assembled tumor-targeting hyaluronic acid nanoparticles for photothermal ablation in orthotopic bladder cancer. Acta Biomater., 2017, 53, 427-438. doi:10.1016/j.actbio.2017.02.021http://dx.doi.org/10.1016/j.actbio.2017.02.021
Miao L.; Guo S. T.; Zhang J.; Kim W. Y.; Huang L. Nanoparticles with precise ratiometric Co-loading and Co-delivery of gemcitabine monophosphate and cisplatin for treatment of bladder cancer. Adv. Funct. Mater., 2014, 24, 6601-6611. doi:10.1002/adfm.201401076http://dx.doi.org/10.1002/adfm.201401076
Apfelthaler C.; Skoll K.; Ciola R.; Gabor F.; Wirth M. A doxorubicin loaded colloidal delivery system for the intravesical therapy of non-muscle invasive bladder cancer using wheat germ agglutinin as targeter. Eur. J. Pharm. Biopharm., 2018, 130, 177-184. doi:10.1016/j.ejpb.2018.06.028http://dx.doi.org/10.1016/j.ejpb.2018.06.028
Wei Y.; Gao L.; Wang L.; Shi L.; Wei E. D.; Zhou B. T.; Zhou L.; Ge B. Polydopamine and peptide decorated doxorubicin-loaded mesoporous silica nanoparticles as a targeted drug delivery system for bladder cancer therapy. Drug Deliv., 2017, 24, 681-691. doi:10.1080/10717544.2017.1309475http://dx.doi.org/10.1080/10717544.2017.1309475
Pan A.; Zhang H. Y.; Li Y. P.; Lin T. Y.; Wang F. L.; Lee J.; Cheng M. S.; Dall'Era M.; Li T. H.; de Vere White R.; Pan C. X.; Lam K. S. Disulfide-crosslinked nanomicelles confer cancer-specific drug delivery and improve efficacy of paclitaxel in bladder cancer. Nanotechnology, 2016, 27, 425103. doi:10.1088/0957-4484/27/42/425103http://dx.doi.org/10.1088/0957-4484/27/42/425103
Zhou D. H.; Zhang G.; Gan Z. H. C(RGDfK) decorated micellar drug delivery system for intravesical instilled chemotherapy of superficial bladder cancer. J. Control. Release, 2013, 169, 204-210. doi:10.1016/j.jconrel.2013.01.025http://dx.doi.org/10.1016/j.jconrel.2013.01.025
Liu H. X.; Mei C. M.; Deng X. R.; Lin W. Q.; He L. Z.; Chen T. F. Rapid visualizing and pathological grading of bladder tumor tissues by simple nanodiagnostics. Biomaterials, 2021, 264, 120434. doi:10.1016/j.biomaterials.2020.120434http://dx.doi.org/10.1016/j.biomaterials.2020.120434
Yu Q. S.; Zhang J. J.; Zhang G.; Gan Z. H. Synthesis and functions of well-defined polymer-drug conjugates as efficient nanocarriers for intravesical chemotherapy of bladder cancera. Macromol. Biosci., 2015, 15, 509-520. doi:10.1002/mabi.201400416http://dx.doi.org/10.1002/mabi.201400416
Zhou D. H.; Zhang G.; Yu Q. S.; Gan Z. H. Folic acid modified polymeric micelles for intravesical instilled chemotherapy. Chinese J. Polym. Sci., 2018, 36, 479-487. doi:10.1007/s10118-018-2009-yhttp://dx.doi.org/10.1007/s10118-018-2009-y
Lv S. W.; Jing R.; Liu X. W.; Shi H. L.; Shi Y. F.; Wang X. G.; Zhao X. B.; Cao K.; Lv Z. One-step microfluidic fabrication of multi-responsive liposomes for targeted delivery of doxorubicin synergism with photothermal effect. Int. J. Nanomed., 2021, 16, 7759-7772. doi:10.2147/ijn.s329621http://dx.doi.org/10.2147/ijn.s329621
徐鑫, 国林义, 徐涛, 喻青松, 甘志华, 张冠. 高分子纳米载药体系膀胱灌注治疗在原位膀胱癌动物模型中的初步应用. 临床泌尿外科杂志, 2019, 34, 895-900.
Xu X.; Liu K. P.; Jiao B. B.; Luo K. J.; Ren J.; Zhang G.; Yu Q. S.; Gan Z. H. Mucoadhesive nanoparticles based on ROS activated gambogic acid prodrug for safe and efficient intravesical instillation chemotherapy of bladder cancer. J. Control. Release, 2020, 324, 493-504. doi:10.1016/j.jconrel.2020.03.028http://dx.doi.org/10.1016/j.jconrel.2020.03.028
Jiao B. B.; Liu K. P.; Gong H. T.; Ding Z. S.; Xu X.; Ren J.; Zhang G.; Yu Q. S.; Gan Z. H. Bladder cancer selective chemotherapy with potent NQO1 substrate co-loaded prodrug nanoparticles. J. Control. Release, 2022, 347, 632-648. doi:10.1016/j.jconrel.2022.05.031http://dx.doi.org/10.1016/j.jconrel.2022.05.031
0
Views
50
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution