浏览全部资源
扫码关注微信
超分子结构与材料国家重点实验室 吉林大学化学学院 长春 130012
Published:20 January 2023,
Published Online:08 October 2022,
Received:01 May 2022,
Accepted:30 June 2022
扫 描 看 全 文
刘朋远,刘崇铭,杨柏.聚合物纳米杂化高性能光功能材料[J].高分子学报,2023,54(01):37-64.
Liu Peng-yuan,Liu Chong-ming,Yang Bai.High Performance Polymer Nano-hybrid Optical Function Materials[J].ACTA POLYMERICA SINICA,2023,54(01):37-64.
刘朋远,刘崇铭,杨柏.聚合物纳米杂化高性能光功能材料[J].高分子学报,2023,54(01):37-64. DOI: 10.11777/j.issn1000-3304.2022.22162.
Liu Peng-yuan,Liu Chong-ming,Yang Bai.High Performance Polymer Nano-hybrid Optical Function Materials[J].ACTA POLYMERICA SINICA,2023,54(01):37-64. DOI: 10.11777/j.issn1000-3304.2022.22162.
近年来材料科学与技术的不断发展,对光学材料提出了高性能化和多功能化的需求,为此,研究者们结合传统有机聚合物光学材料和无机光学材料的优势,提出了备受关注的聚合物纳米粒子杂化的策略.本文首先概述了针对杂化材料透光性进行控制的杂化方法,指出杂化方法的选择很大程度上与材料性质尤其是纳米相的性质相关,而杂化方法的目的则在于实现纳米杂化材料的透光性控制,纳米杂化光功能材料实现功能的前提即为透光性. 随后,分别介绍了聚合物纳米杂化策略在高折射率材料与发光材料中的应用.对于高折射率材料,总结了提升材料折射率的不同策略.对于发光材料,总结了基于聚合物相和纳米相之间不同的相互作用而采用各种杂化方式以及相关的性能提升.接下来,讨论了聚合物纳米杂化光功能材料在光学和机械、热学、表面性能方面的调控手段和性能提升的策略.最后,提出了下一代光学杂化材料所面临的困难与挑战,以进一步推动这一领域的发展.
In recent years
with the demands of materials science and high technologies
of optical materials with high performance and multi-functionalization are required. In order to combine the advantages of traditional organic polymer optical materials and inorganic optical materials
many researchers pay much attention to the fabrication and properties of the polymer/nanoparticle composites. In this paper
the methods for controlling the light transmittance of hybrid materials are summarized
focusing on the importance of hybrid materials' transparency
and then it is worth noting that the selection of hybrid methods is largely related to the properties of materials
especially the properties of inorganic nanoparticles. Subsequently
we introduce the applications of polymer/nanoparticle composites
including high refractive index materials and luminescent materials. For high refractive index materials
we summarized different strategies about the improvement of refractive index. For luminescent materials
various fabrication methods based on different interactions between polymer phase and inorganic nano-phase and the improvements of performance are summarized. Next
the performance improvement and adjustment of polymer/nanoparticle composites for other optical properties
mechanical
thermal and surface properties are discussed. Finally
we propose the challenges of the next generation polymer/nanoparticle composites to further push forward the development in this field.
聚合物纳米杂化材料光功能材料杂化方法高折射率材料发光材料
Polymer nanocompositesOptical function materialsHybrid methodsHigh refractive index materialsLuminescent materials
Mont F. W.; Kim J. K.; Schubert M. F.; Schubert E. F.; Siegel R. W. High-refractive-index TiO2-nanoparticle-loaded encapsulants for light-emitting diodes. J. Appl. Phys., 2008, 103, 083120. doi:10.1063/1.2903484http://dx.doi.org/10.1063/1.2903484
Kim J,; Yang S,; Bae B. Thermally stable transparent sol-gel based siloxane hybrid material with high refractive index for light emitting diode (LED) encapsulation. Chem. Mater., 2010, 22, 3549-3555. doi:10.1021/cm100903bhttp://dx.doi.org/10.1021/cm100903b
SSun C.; Zhang Y.; Ruan C.; Yin C.; Wang X.; Wang Y.; Yu W. W. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv. Mater., 2016, 28, 10088-10094. doi:10.1002/adma.201603081http://dx.doi.org/10.1002/adma.201603081
Zhang H.; Wang C.; Li M.; Zhang J.; Lu G.; Yang B. Fluorescent nanocrystal-polymer complexes with flexible processability. Adv. Mater., 2005, 17, 853-857. doi:10.1002/adma.200401303http://dx.doi.org/10.1002/adma.200401303
Alim M. D.; Glugla D. J.; Mavila S.; Wang C.; Nystrom P. D.; Sullivan A. C.; McLeod R. R.; Bowman C. N. High dynamic range (Δn) two-stage photopolymers via enhanced solubility of a high refractive index acrylate writing monomer. ACS Appl. Mater. Interfaces, 2018, 10, 1217-1224. doi:10.1021/acsami.7b15063http://dx.doi.org/10.1021/acsami.7b15063
Hu Y.; Hao X.; Xu L.; Xie X.; Xiong B.; Hu Z.; Sun H.; Yin G.Q.; Li X.; Peng H. Construction of supramolecular liquid-crystalline metallacycles for holographic storage of colored images. J. Am. Chem. Soc., 2020, 142, 6285-6294. doi:10.1021/jacs.0c00698http://dx.doi.org/10.1021/jacs.0c00698
Ni M.; Peng H.; Liao Y.; Yang Z.; Xue Z.; Xie X. 3D Image storage in photopolymer/ZnS nanocomposites tailored by “photoinitibitor”. Macromolecules, 2015, 48, 2958-2966.
杨柏, 吕长利, 沈家骢. 高性能聚合物光学材料. 北京: 化学工业出版社, 2005.
Inoue T. Strain-induced birefringence of amorphous polymers and molecular design of optical polymers. ACS Appl. Polym. Mater., 2021, 3, 2264-2273. doi:10.1021/acsapm.1c00149http://dx.doi.org/10.1021/acsapm.1c00149
Liu J.; Ueda M. High refractive index polymers: fundamental research and practical applications. J. Mater. Chem., 2009, 19, 8907-8919. doi:10.1039/b909690fhttp://dx.doi.org/10.1039/b909690f
Shu Y.; Lin X.; Qin H.; Hu Z.; Jin Y.; Peng X. Quantum dots for display applications. Angew. Chem. Int. Ed., 2020, 132, 22496-22507. doi:10.1002/ange.202004857http://dx.doi.org/10.1002/ange.202004857
Haase M.; Schäfer H. Upconverting nanoparticles. Angew. Chem. Int. Ed., 2011, 50, 5808-5829. doi:10.1002/anie.201005159http://dx.doi.org/10.1002/anie.201005159
Wang S.; Zhang J.; Luo D.; Gu F.; Tang D.; Dong Z.; Tan G.; Que W.; Zhang T.; Li S. Transparent ceramics: processing, materials and applications. Prog. Solid. St. Chem., 2013, 41, 20-54. doi:10.1016/j.progsolidstchem.2012.12.002http://dx.doi.org/10.1016/j.progsolidstchem.2012.12.002
Parola S.; Julián-López B.; Carlos L. D.; Sanchez C. Optical properties of hybrid organic-inorganic materials and their applications. Adv. Funct. Mater., 2016, 26, 6506-6544. doi:10.1002/adfm.201602730http://dx.doi.org/10.1002/adfm.201602730
Lebeau B.; Innocenzi P. Hybrid materials for optics and photonics. Chem. Soc. Rev., 2011, 40, 886-906. doi:10.1039/c0cs00106fhttp://dx.doi.org/10.1039/c0cs00106f
Loste J.; Lopez-Cuesta J.; Billon L.; Garay H.; Save M. Transparent polymer nanocomposites: an overview on their synthesis and advanced properties. Prog. Polym. Sci., 2019, 89, 133-158. doi:10.1016/j.progpolymsci.2018.10.003http://dx.doi.org/10.1016/j.progpolymsci.2018.10.003
Kojima Y.; Usuki A.; Kawasumi M.; Okada A.; Fukushima Y.; Kurauchi T.; Kamigaito O. Mechanical properties of nylon 6-clay hybrid. J. Mater. Res., 1993, 8, 1185-1189. doi:10.1557/jmr.1993.1185http://dx.doi.org/10.1557/jmr.1993.1185
Thakur V. K.; Ding G.; Ma J.; Lee P. S.; Lu X. Hybrid materials and polymer electrolytes for electrochromic device applications. Adv. Mater., 2012, 24, 4071-4096. doi:10.1002/adma.201200213http://dx.doi.org/10.1002/adma.201200213
Xu T.; Qiao Q. Conjugated polymer-inorganic semiconductor hybrid solar cells. Energy Environ. Sci., 2011, 4, 2700-2720. doi:10.1039/c0ee00632ghttp://dx.doi.org/10.1039/c0ee00632g
Surmenev R. A.; Orlova T.; Chernozem R. V.; Ivanova A. A.; Bartasyte A.; Mathur S.; Surmeneva M. A. Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: a review. Nano Energy, 2019, 62, 475-506. doi:10.1016/j.nanoen.2019.04.090http://dx.doi.org/10.1016/j.nanoen.2019.04.090
Zhang R. X.; Ahmed T.; Li L. Y.; Li J.; Abbasi A. Z.; Wu X. Y. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. Nanoscale, 2017, 9, 1334-1355. doi:10.1039/c6nr08486ahttp://dx.doi.org/10.1039/c6nr08486a
Dasog M.; Kehrle J.; Rieger B.; Veinot J. G. C. Silicon nanocrystals and silicon-polymer hybrids: synthesis, surface engineering, and applications. Angew. Chem. Int. Ed., 2016, 55, 2322-2339. doi:10.1002/anie.201506065http://dx.doi.org/10.1002/anie.201506065
Sobiech M.; Bujak P.; Luliński P.; Pron A. Semiconductor nanocrystal-polymer hybrid nanomaterials and their application in molecular imprinting. Nanoscale, 2019, 11, 12030-12074. doi:10.1039/c9nr02585ehttp://dx.doi.org/10.1039/c9nr02585e
Pan B.; Pan B.; Zhang W.; Lv L.; Zhang Q.; Zheng S. Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem. Eng. J., 2009, 151, 19-29. doi:10.1016/j.cej.2009.02.036http://dx.doi.org/10.1016/j.cej.2009.02.036
Kalaj M.; Bentz K. C.; Ayala Jr S.; Palomba J. M.; Barcus K. S.; Katayama Y.; Cohen S. M. MOF-polymer hybrid materials: from simple composites to tailored architectures. Chem. Rev., 2020, 120, 8267-8302. doi:10.1021/acs.chemrev.9b00575http://dx.doi.org/10.1021/acs.chemrev.9b00575
Youssef A. M.; El-Nahrawy A. M.; Abou Hammad A. B. Sol-gel synthesis and characterizations of hybrid chitosan-PEG/calcium silicate nanocomposite modified with ZnO-NPs and (E102) for optical and antibacterial applications. Int. J. Biol. Macromol., 2017, 97, 561-567. doi:10.1016/j.ijbiomac.2017.01.059http://dx.doi.org/10.1016/j.ijbiomac.2017.01.059
Sengupta R.; Bandyopadhyay A.; Sabharwal S.; Chaki T. K.; Bhowmick A. K. Polyamide-6,6/in situ silica hybrid nanocomposites by sol-gel technique: synthesis, characterization and properties. Polymer, 2005, 46, 3343-3354.
Shin S.; Kim B.; Chang E.; Cho J. K.; Suh D. H. A biobased photocurable binder for composites with transparency and thermal stability from biomass-derived isosorbide. RSC Adv., 2014, 4, 6226-6231. doi:10.1039/c3ra47287fhttp://dx.doi.org/10.1039/c3ra47287f
Kim D. H.; Jang W.; Choi K.; Choi J. S.; Pyun J.; Lim J.; Char K.; Im S. G. One-step vapor-phase synthesis of transparent high refractive index sulfur-containing polymers. Sci. Adv., 2020, 6, eabb5320. doi:10.1126/sciadv.abb5320http://dx.doi.org/10.1126/sciadv.abb5320
Fang L.; Sun J.; Chen X.; Tao Y.; Zhou J.; Wang C.; Fang Q. Phosphorus- and sulfur-containing high-refractive-index polymers with high Tg and transparency derived from a bio-based aldehyde. Macromolecules, 2020, 53, 125-131. doi:10.1021/acs.macromol.9b01770http://dx.doi.org/10.1021/acs.macromol.9b01770
Chen X.; Fang L.; Wang J.; He F.; Chen X.; Wang Y.; Zhou J.; Tao Y.; Sun J.; Fang Q. Intrinsic high refractive index siloxane-sulfide polymer networks having high thermostability and transmittance via thiol-ene cross-linking reaction. Macromolecules, 2018, 51, 7567-7573. doi:10.1021/acs.macromol.8b01586http://dx.doi.org/10.1021/acs.macromol.8b01586
Zha R. H.; Vantomme G.; Berrocal J. A.; Gosens R.; Waal B.; Meskers S.; Meijer E. Photoswitchable nanomaterials based on hierarchically organized siloxane oligomers. Adv. Funct. Mater., 2018, 28, 1703952. doi:10.1002/adfm.201703952http://dx.doi.org/10.1002/adfm.201703952
Nguyen B. Q. H.; Shanmugasundaram A.; Hou T. F.; Park J.; Lee D. W. Realizing the flexible and transparent highly-hydrophobic film through siloxane functionalized polyurethane-acrylate micro-pattern. Chem. Eng. J., 2019, 373, 68-77. doi:10.1016/j.cej.2019.04.197http://dx.doi.org/10.1016/j.cej.2019.04.197
Alekseeva T.; Kozak N.; Shtompel V. Structure and optical properties of the photosensitive hybrid Ti-contained polymer materials for photonics. Opt. Mater., 2019, 98, 109493. doi:10.1016/j.optmat.2019.109493http://dx.doi.org/10.1016/j.optmat.2019.109493
Kim Y. H.; Bae J.; Jin J.; Bae B. Sol-Gel derived transparent zirconium-phenyl siloxane hybrid for robust high refractive index LED encapsulant. ACS Appl. Mater. Interfaces, 2014, 6, 3115-3121. doi:10.1021/am500315yhttp://dx.doi.org/10.1021/am500315y
张国彦, 张纪斌, 杨柏. 高折射率聚合物-无机纳米光学杂化材料的设计与制备及其应用. 高分子学报, 2013, (5), 589-599. doi:10.3724/SP.J.1105.2013.12412http://dx.doi.org/10.3724/SP.J.1105.2013.12412
Gao C.; Li N.; Xue C.; Wang H.; Liu H.; Chang Q.; Yang J.; Hu S. Highly improved mechanical performances of polyvinyl butyral through fluorescent carbon dots. Mater. Lett., 2020, 280, 128537. doi:10.1016/j.matlet.2020.128537http://dx.doi.org/10.1016/j.matlet.2020.128537
Park S.; Eom Y.; Jeon H.; Koo J. M.; Lee E. S.; Jegal J.; Hwang S. Y.; Oh D. X.; Park J. Preparation of synergistically reinforced transparent bio-polycarbonate nanocomposites with highly dispersed cellulose nanocrystals. Green Chem., 2019, 21, 5212-5221. doi:10.1039/c9gc02253hhttp://dx.doi.org/10.1039/c9gc02253h
Jeon H.; Jo J. H.; Yang K. P.; Lee K. Improvement in efficiency and stability of quantum dot/polymer nanocomposite film for light-emitting diodes using refractive index-controlled quantum dot-silica hybrid particles. J. Mater. Chem. C, 2019, 7, 11764-11769. doi:10.1039/c9tc03362ahttp://dx.doi.org/10.1039/c9tc03362a
Zhang G.; Zhang H.; Zhang X.; Zhu S.; Zhang L.; Meng Q.; Wang M.; Li Y.; Yang B. Embedding graphene nanoparticles into poly(N,N'-dimethylacrylamine) to prepare transparent nanocomposite films with high refractive index. J. Mater. Chem., 2012, 22, 21218-21224. doi:10.1039/c2jm32871bhttp://dx.doi.org/10.1039/c2jm32871b
Zhang P.; Chen H.; Yang Y.; Zhao D.; Jia Z.; Zheng K.; Qin G.; Qin W. 3D up-conversion display of NaYF4-PMMA covalent-linking nanocomposites. J. Alloys Compd., 2018, 753, 725-730.
Zhang X.; Zhang W.; Zhang X.; Wang Y. Facile fabrication of upconversion photoluminescent transparent semiaromatic polyamide nanocomposites through interfacial chemistry modification. ACS Omega, 2020, 5, 29838-29843. doi:10.1021/acsomega.0c03894http://dx.doi.org/10.1021/acsomega.0c03894
Cui, C W.; Yang C.; Bao J.; Huang X.; Zeng X.; Chen J. Monodispersed ZnO nanoparticle-poly(methyl methacrylate) composites with visible transparency for ultraviolet shielding applications. ACS Appl. Nano Mater., 2020, 3, 9026-9034. doi:10.1021/acsanm.0c01723http://dx.doi.org/10.1021/acsanm.0c01723
Lü C.; Gao J.; Fu Y.; Du Y.; Shi Y.; Su Z. A Ligand exchange route to highly luminescent surface-functionalized zns nanoparticles and their transparent polymer nanocomposites. Adv. Funct. Mater., 2008, 18, 3070-3079. doi:10.1002/adfm.200800452http://dx.doi.org/10.1002/adfm.200800452
Tsai C.; Hsu S.; Ho C.; Tu Y.; Tsai H.; Wang C.; Su W. High refractive index transparent nanocomposites prepared by in situ polymerization. J. Mater. Chem. C, 2014, 2, 2251-2258. doi:10.1039/c3tc32374ahttp://dx.doi.org/10.1039/c3tc32374a
Zhu H.; Yan B.; Zhou S.; Wang Z.; Wu L. Synthesis and super-resolution imaging performance of a refractive-index-controllable microsphere superlens. J. Mater. Chem. C, 2015, 3, 10907-10915. doi:10.1039/c5tc02310fhttp://dx.doi.org/10.1039/c5tc02310f
Xu J.; Zhang Y.; Zhu W.; Cui Y. Synthesis of polymeric nanocomposite hydrogels containing the pendant ZnS nanoparticles: approach to higher refractive index optical polymeric nanocomposites. Macromolecules, 2018, 51, 2672-2681. doi:10.1021/acs.macromol.7b02315http://dx.doi.org/10.1021/acs.macromol.7b02315
Choi J.; Dung M. X.; Jeong H. Novel synthesis of covalently linked silicon quantum dot-polystyrene hybrid materials: Silicon quantum dot-polystyrene polymers of tunable refractive index. Mater. Chem. Phys., 2014, 148, 463-472. doi:10.1016/j.matchemphys.2014.08.016http://dx.doi.org/10.1016/j.matchemphys.2014.08.016
Huang J.; Zhang G.; Dong B.; Liu J. Synthesis and properties of polyimide silica nanocomposite film with high transparent and radiation resistance. Nanomaterials, 2021, 11, 562. doi:10.3390/nano11030562http://dx.doi.org/10.3390/nano11030562
Lee K. M.; Han C. D. Effect of hydrogen bonding on the rheology of polycarbonate/organoclay nanocomposites. Polymer, 2003, 44, 4573-4588. doi:10.1016/s0032-3861(03)00444-0http://dx.doi.org/10.1016/s0032-3861(03)00444-0
Liu Y.; Lin Z.; Zhao X.; Tuan C.; Moon K.; Yoo S.; Jang M.; Wong C. High refractive index and transparent nanocomposites as encapsulant for high brightness LED packaging. IEEE. T. Com. Pack. Man., 2014, 4, 1125-1130. doi:10.1109/tcpmt.2014.2317413http://dx.doi.org/10.1109/tcpmt.2014.2317413
Zhang Q.; Fang Z.; Cao Y.; Du H.; Wu H.; Beuerman R.; Chan-Park M. B.; Duan H.; Xu R. High refractive index inorganic-organic interpenetrating polymer network (IPN) hydrogel nanocomposite toward artificial cornea implants. ACS Macro Lett., 2012, 1, 876-881. doi:10.1021/mz300078yhttp://dx.doi.org/10.1021/mz300078y
Kubiak J. M.; Macfarlane R. J. Forming covalent crosslinks between polymer-grafted nanoparticles as a route to highly filled and mechanically robust nanocomposites. Adv. Funct. Mater., 2019, 29, 1905168. doi:10.1002/adfm.201905168http://dx.doi.org/10.1002/adfm.201905168
Prudnikau A.; Shiman D. I.; Ksendzov E.; Harwell J.; Bolotina E. A.; Nikishau P. A.; Kostjuk S. V.; Samuel I. D.; Lesnyak V. Design of cross-linked polyisobutylene matrix for efficient encapsulation of quantum dots. Nanoscale Adv., 2021, 3, 1443-1454. doi:10.1039/d0na01012jhttp://dx.doi.org/10.1039/d0na01012j
Natarajan B.; Neely T.; Rungta A.; Benicewicz B. C.; Schadler L. S. Thermomechanical properties of bimodal brush modified nanoparticle composites. Macromolecules, 2013, 46, 4909-4918. doi:10.1021/ma400553chttp://dx.doi.org/10.1021/ma400553c
Sunday D.; Ilavsky J.; Green D. L. A phase diagram for polymer-grafted nanoparticles in homopolymer matrices. Macromolecules, 2012, 45, 4007-4011. doi:10.1021/ma300438ghttp://dx.doi.org/10.1021/ma300438g
Arai K.; Mizutani T.; Miyamoto M.; Kimura Y.; Aoki T. Colloidal silica bearing thin polyacrylate coat: a facile inorganic modifier of acrylic emulsions for fabricating hybrid films with least aggregation of silica nanoparticle. Prog. Org. Coat., 2019, 128, 11-20. doi:10.1016/j.porgcoat.2018.12.002http://dx.doi.org/10.1016/j.porgcoat.2018.12.002
Van Hensbergen J. A.; Liu M.; Burford R. P.; Lowe A. B. Simultaneous ROMP and titania sol-gel reactions and nanodispersed functional organic-inorganic composite hybrid materials. J. Mater. Chem. C, 2015, 3, 693-702. doi:10.1039/c4tc01971ghttp://dx.doi.org/10.1039/c4tc01971g
Du T.; Song H.; Ilegbusi O. J. Sol-gel derived ZnO/PVP nanocomposite thin film for superoxide radical sensor. Mater. Sci. Eng. C, 2007, 27, 414-420. doi:10.1016/j.msec.2006.05.040http://dx.doi.org/10.1016/j.msec.2006.05.040
Perchacz M.; Beneš H.; Zhigunov A.; Serkis M.; Pavlova E. Differently-catalyzed silica-based precursors as functional additives for the epoxy-based hybrid materials. Polymer, 2016, 99, 434-446. doi:10.1016/j.polymer.2016.07.053http://dx.doi.org/10.1016/j.polymer.2016.07.053
Lu Y.; Zhao Z.; Fan X.; Cao X.; Hai M.; Yang Z.; Zheng K.; Lu J.; Zhang J.; Ma Y. Zirconia/phenylsiloxane nano-composite for LED encapsulation with high and stable light extraction efficiency. RSC Adv., 2021, 11, 18326-18332. doi:10.1039/d1ra02230jhttp://dx.doi.org/10.1039/d1ra02230j
Harb S. V.; Trentin A.; Uvida M. C.; Magnani M.; Pulcinelli S. H.; Santilli C. V.; Hammer P. A comparative study on PMMA-TiO2 and PMMA-ZrO2 protective coatings. Prog. Org. Coat., 2020, 140, 105477.
Feng K.; Peng L.; Yu L.; Zheng Y.; Chen R.; Zhang W.; Chen G. Universal antifogging and antimicrobial thin coating based on dopamine-containing glycopolymers. ACS Appl. Mater. Interfaces, 2020, 12, 27632-27639. doi:10.1021/acsami.0c07949http://dx.doi.org/10.1021/acsami.0c07949
Watt A.; Thomsen E.; Meredith P.; Rubinsztein-Dunlop H. A new approach to the synthesis of conjugated polymer-nanocrystal composites for heterojunction optoelectronics. Chem. Commun., 2004, 2334-2335. doi:10.1039/b406060ahttp://dx.doi.org/10.1039/b406060a
Lü C.; Guan C.; Liu Y.; Cheng Y.; Yang B. PbS/polymer nanocomposite optical materials with high refractive index. Chem. Mater., 2005, 17, 2448-2454. doi:10.1021/cm050113nhttp://dx.doi.org/10.1021/cm050113n
Asunskis D. J.; Bolotin I. L.; Hanley L. Nonlinear optical properties of PbS nanocrystals grown in polymer solutions. J. Phys. Chem. C, 2008, 112, 9555-9558. doi:10.1021/jp8037076http://dx.doi.org/10.1021/jp8037076
Zou S.; Bai H.; Yang P.; Yang W. A biomimetic chemical approach to facile preparation of large-area, patterned, ZnO quantum dot/polymer nanocomposites on flexible plastics. Macromol. Chem. Phys., 2009, 210, 1519-1527. doi:10.1002/macp.200900100http://dx.doi.org/10.1002/macp.200900100
Kos T.; Anžlovar A.; Pahovnik D.; Žagar E.; Orel Z. C.; Žigon M. Zinc-containing block copolymer as a precursor for the in situ formation of nano ZnO and PMMA/ZnO nanocomposites. Macromolecules, 2013, 46, 6942-6948. doi:10.1021/ma4010296http://dx.doi.org/10.1021/ma4010296
Watt A.; Rubinsztein-Dunlop H.; Meredith P. Growing semiconductor nanocrystals directly in a conducting polymer. Mater. Lett., 2005, 59, 3033-3036. doi:10.1016/j.matlet.2005.05.013http://dx.doi.org/10.1016/j.matlet.2005.05.013
Guo Y.; Wang Q.; Li H.; Gao Y.; Xu X.; Tang B.; Wang Y.; Yang B.; Lee Y.; French P. J. Carbon dots embedded in cellulose film: programmable, performance-tunable, and large-scale subtle fluorescent patterning by in situ laser writing. ACS Nano, 2022, 16, 2910-2920. doi:10.1021/acsnano.1c09999http://dx.doi.org/10.1021/acsnano.1c09999
Zheng Y.; Liu H.; Li J.; Xiang J.; Panmai M.; Dai Q.; Xu Y.; Tie S.; Lan S. Controllable formation of luminescent carbon quantum dots mediated by the fano resonances formed in oligomers of gold nanoparticles. Adv. Mater., 2019, 31, 1901371. doi:10.1002/adma.201901371http://dx.doi.org/10.1002/adma.201901371
Novak B. M. Hybrid Nanocomposite Materials—between inorganic glasses and organic polymers. Adv. Mater., 1993, 5, 422-433. doi:10.1002/adma.19930050603http://dx.doi.org/10.1002/adma.19930050603
Hu Y.; Kowalski B. A.; Mavila S.; Podgórski M.; Sinha J.; Sullivan A. C.; McLeod R. R.; Bowman C. N. Holographic photopolymer material with high dynamic range (δn) via thiol-ene click chemistry. ACS Appl. Mater. Interfaces, 2020, 12, 44103-44109. doi:10.1021/acsami.0c08872http://dx.doi.org/10.1021/acsami.0c08872
Qiu J.; Hu G.; Wang Y.; Wang Y.; Luo M.; Hu X. A high refractive index resist for UV-nanoimprint soft lithography based on titanium-containing elemental polymer oligomers. J. Mater. Chem. C, 2022, 10, 219-226. doi:10.1039/d1tc04578dhttp://dx.doi.org/10.1039/d1tc04578d
Badur T.; Dams C.; Hampp N. High refractive index polymers by design. Macromolecules, 2018, 51, 4220-4228. doi:10.1021/acs.macromol.8b00615http://dx.doi.org/10.1021/acs.macromol.8b00615
Musikant, S. Optical Materials: An Introduction to Selection and Application. New York: CRC Press, 2020. 17-19. doi:10.1201/9780367812874-5http://dx.doi.org/10.1201/9780367812874-5
安智珠. 聚合物分子设计原理. 长沙: 湖南科学技术出版社, 1985. 80-82.
Groh W.; Zimmermann A. What is the lowest refractive index of an organic polymer. Macromolecules, 1991, 24, 6660-6663. doi:10.1021/ma00025a016http://dx.doi.org/10.1021/ma00025a016
Mazumder K.; Komber H.; Bittrich E.; Voit B.; Banerjee S. Sulfur containing high refractive index poly(arylene thioether)s and poly(arylene ether)s. Macromolecules, 2022, 55, 1015-1029. doi:10.1021/acs.macromol.1c02097http://dx.doi.org/10.1021/acs.macromol.1c02097
Tapaswi P. K.; Choi M.; Jeong K.; Ando S.; Ha C. Transparent aromatic polyimides derived from thiophenyl-substituted benzidines with high refractive index and small birefringence. Macromolecules, 2015, 48, 3462-3474. doi:10.1021/acs.macromol.5b00432http://dx.doi.org/10.1021/acs.macromol.5b00432
Su Y.; Filho E. B. D. S.; Peek N.; Chen B.; Stiegman A. E. High refractive index polymers (n > 1.7), based on thiol-ene cross-linking of polarizable P=S and P=Se organic/inorganic monomers. Macromolecules, 2019, 52, 9012-9022.
Wu X.; He J.; Hu R.; Tang B. Z. Room-temperature metal-free multicomponent polymerizations of elemental selenium toward stable alicyclic poly(oxaselenolane)s with high refractive index. J. Am. Chem. Soc., 2021, 143, 15723-15731. doi:10.1021/jacs.1c06732http://dx.doi.org/10.1021/jacs.1c06732
Mavila S.; Sinha J.; Hu Y.; Podgorski M.; Shah P. K.; Bowman C. N. High refractive index photopolymers by thiol-yne “click” polymerization. ACS Appl. Mater. Interfaces, 2021, 13, 15647-15658. doi:10.1021/acsami.1c00831http://dx.doi.org/10.1021/acsami.1c00831
Yuan H.; Kida T.; Ishitobi Y.; Tanaka R.; Yamaguchi M.; Nakayama Y.; Shiono T. Cyclic olefin copolymer bearing pendant fluorenyl groups with high refractive index and low chromatic dispersion. Macromolecules, 2021, 55, 125-132. doi:10.1021/acs.macromol.1c02101http://dx.doi.org/10.1021/acs.macromol.1c02101
Fu M.; Ueda M.; Ando S.; Higashihara T. Development of novel triazine-based poly(phenylene sulfide)s with high refractive index and low birefringence. ACS Omega, 2020, 5, 5134-5141. doi:10.1021/acsomega.9b04152http://dx.doi.org/10.1021/acsomega.9b04152
Matsumura Y.; Horikoshi H.; Furukawa K.; Miyamoto M.; Nishimura Y.; Ochiai B. Synthesis of bismuth-containing polymer films with high refractive index and X-ray shielding property by radical polymerization of styrylbismuthine derivatives. ACS Macro Lett., 2022, 11, 723-726. doi:10.1021/acsmacrolett.2c00149http://dx.doi.org/10.1021/acsmacrolett.2c00149
Speight J. G. Lange’s Handbook of Chemistry. New York: McGraw-hill, 2005. 2.65-2.253.
Su W.; Fu Y.; Pan W. Thermal properties of high refractive index epoxy resin system. Thermochimica Acta, 2002, 392, 385-389. doi:10.1016/s0040-6031(02)00124-7http://dx.doi.org/10.1016/s0040-6031(02)00124-7
Hecht, E. Optics: Fifth edition. Harlow: Pearson Education Limited, 2013. 103-104. doi:10.5937/ekonhor1303257bhttp://dx.doi.org/10.5937/ekonhor1303257b
Shaffer P. T. Refractive index, dispersion, and birefringence of silicon carbide polytypes. Appl. Opt., 1971, 10, 1034-1036. doi:10.1364/ao.10.001034http://dx.doi.org/10.1364/ao.10.001034
Papadimitrakopoulos F.; Wisniecki P.; Bhagwagar D. E. Mechanically attrited silicon for high refractive index nanocomposites. Chem. Mater., 1997, 9, 2928-2933. doi:10.1021/cm970278zhttp://dx.doi.org/10.1021/cm970278z
Gao L.; Lemarchand F.; Lequime M. Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering. Opt. Express, 2012, 20, 15734-15751. doi:10.1364/oe.20.015734http://dx.doi.org/10.1364/oe.20.015734
Frye A.; French R.; Bonnell D. Optical properties and electronic structure of oxidized and reduced single-crystal strontium titanate. Inter. J. Mater. Res., 2003, 94, 226-232. doi:10.3139/146.030226http://dx.doi.org/10.3139/146.030226
Mark G. Solution routes to Ⅲ-Ⅴ semiconductor quantum dots: nanotechnology: quatum dots. Curr. Opin. Solid. St. M., 2002, 6, 355-363. doi:10.1016/s1359-0286(02)00028-1http://dx.doi.org/10.1016/s1359-0286(02)00028-1
Lide, David R. CRC Handbook of Chemistry and Physics 97th Edition. Boca Raton: CRC Press, 2004. 10-188-10-191.
Schmitt-Rink S.; Miller D.; Chemla D. S. Theory of the linear and nonlinear optical properties of semiconductor microcrystallites. Phy. Rev. B, 1987, 35, 8113. doi:10.1103/physrevb.35.8113http://dx.doi.org/10.1103/physrevb.35.8113
Kyprianidou-Leodidou T.; Caseri W.; Suter U. W. Size variation of pbs particles in high-refractive-index nanocomposites. J. Phys. Chem., 1994, 98, 8992-8997. doi:10.1021/j100087a029http://dx.doi.org/10.1021/j100087a029
Zimmermann L.; Weibel M.; Caseri W.; Suter U. W.; Walther P. Polymer nanocomposites with “ultralow” refractive index. Polym. Adv. Technol., 1993, 4, 1-7. doi:10.1002/pat.1993.220040101http://dx.doi.org/10.1002/pat.1993.220040101
Rao Y.; Chen S. Molecular composites comprising TiO2 and their optical properties. Macromolecules, 2008, 41, 4838-4844. doi:10.1021/ma800371vhttp://dx.doi.org/10.1021/ma800371v
Lü C.; Cheng Y.; Liu Y.; Liu F.; Yang B. A Facile route to ZnS-polymer nanocomposite optical materials with high nanophase content via γ-ray irradiation initiated bulk polymerization. Adv. Mater., 2006, 18, 1188-1192. doi:10.1002/adma.200502404http://dx.doi.org/10.1002/adma.200502404
Zhang G.; Zhang J.; Yang B. Fabrication of polymerizable ZnS nanoparticles in N,N'-dimethylacrylamide and the resulting high refractive index optical materials. Polym. Chem., 2013, 4, 3963-3967. doi:10.1039/c3py00458ahttp://dx.doi.org/10.1039/c3py00458a
Li X.; Xu J. A Simple synthesis of higher refractive index polymeric nanocomposite containing the pendant ZnS nanocrystals capping different amount of mercaptoethanol. J. Nanomater., 2020, 2020, 7350367. doi:10.1155/2020/7350367http://dx.doi.org/10.1155/2020/7350367
Zhao P.; Xu J.; Zhang Y.; Zhu W.; Cui Y. Polymerizable-group capped ZnS nanoparticle for high refractive index inorganic-organic hydrogel contact lens. Mater. Sci. Eng. C, 2018, 90, 485-493. doi:10.1016/j.msec.2018.04.086http://dx.doi.org/10.1016/j.msec.2018.04.086
Hu J.; Gao Q.; Xu L.; Wang M.; Zhang M.; Zhang K.; Liu W.; Wu G. Functionalization of cotton fabrics with highly durable polysiloxane-TiO2 layershybrid: potential applications for photo-induced water-oil separation, UV shielding, and self-cleaning. J. Mater. Chem. A, 2018, 6, 6085-6095. doi:10.1039/c7ta11231ahttp://dx.doi.org/10.1039/c7ta11231a
Wang Z.; Lu Z.; Mahoney C.; Yan J.; Ferebee R.; Luo D.; Matyjaszewski K.; Bockstaller M. R. Transparent and high refractive index thermoplastic polymer glasses using evaporative ligand exchange of hybrid particle fillers. ACS Appl. Mater. Interfaces, 2017, 9, 7515-7522. doi:10.1021/acsami.6b12666http://dx.doi.org/10.1021/acsami.6b12666
Watanabe S.; Oyaizu K. Catechol end-capped poly(arylene sulfide) as a high-refractive-index “TiO2/ZrO2-nanodispersible” polymer. ACS Appl. Polym. Mater., 2021, 3, 4495-4503.
Tao P.; Li Y.; Rungta A.; Viswanath A.; Gao J.; Benicewicz B. C.; Siegel R. W.; Schadler L. S. TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem., 2011, 21, 18623-18629. doi:10.1039/c1jm13093ehttp://dx.doi.org/10.1039/c1jm13093e
Nam K. H.; Lee A.; Lee S. K.; Hur K.; Han H. Infrared transmitting polyimides based on chalcogenide element-blocks with tunable high-refractive indices and broad optical windows. J. Mater. Chem. C, 2019, 7, 10574-10580. doi:10.1039/c9tc03574ehttp://dx.doi.org/10.1039/c9tc03574e
Xia Y.; Zhang C.; Wang J.; Wang D.; Zeng X.; Chen J. Synthesis of transparent aqueous ZrO2 nanodispersion with a controllable crystalline phase without modification for a high-refractive-index nanocomposite film. Langmuir, 2018, 34, 6806-6813. doi:10.1021/acs.langmuir.8b00160http://dx.doi.org/10.1021/acs.langmuir.8b00160
Tsai C.; Hsu S.; Ho C.; Tu Y.; Tsai H.; Wang C.; Su W. High refractive index transparent nanocomposites prepared by in situ polymerization. J. Mater. Chem. C, 2014, 2, 2251-2258. doi:10.1039/c3tc32374ahttp://dx.doi.org/10.1039/c3tc32374a
Kim D. W.; Han J. W.; Lim K. T.; Kim Y. H. Highly enhanced light-outcoupling efficiency in ito-free organic light-emitting diodes using surface nanostructure embedded high-refractive index polymers. ACS Appl. Mater. Interfaces, 2018, 10, 985-991. doi:10.1021/acsami.7b15345http://dx.doi.org/10.1021/acsami.7b15345
Zhang G.; Zhang H.; Wei H.; Zhu S.; Wu Z.; Wang Z.; Jia F.; Zhang J.; Yang B. Creation of transparent nanocomposite films with a refractive index of 2.3 using polymerizable silicon nanoparticles. Part. Part. Syst. Char., 2013, 30, 653-657.
Zhang G.; Chen M.; Zhang J.; He B.; Yang H.; Yang B. Effective increase in the refractive index of novel transparent silicone hybrid films by introduction of functionalized silicon nanoparticles. RSC Adv., 2015, 5, 62128-62133. doi:10.1039/c5ra09668ehttp://dx.doi.org/10.1039/c5ra09668e
Liang S.; Zhang M.; Biesold G. M.; Choi W.; He Y.; Li Z.; Shen D.; Lin Z. Recent advances in synthesis, properties, and applications of metal halide perovskite nanocrystals/polymer nanocomposites. Adv. Mater., 2021, 33, 2005888. doi:10.1002/adma.202005888http://dx.doi.org/10.1002/adma.202005888
Moon H.; Lee C.; Lee W.; Kim J.; Chae H. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv. Mater., 2019, 31, 1804294. doi:10.1002/adma.201804294http://dx.doi.org/10.1002/adma.201804294
Shu Y.; Lin X.; Qin H.; Hu Z.; Jin Y.; Peng X. Quantum dots for display applications. Angew Chem. Int. Ed., 2020, 59, 22312-22323. doi:10.1002/anie.202004857http://dx.doi.org/10.1002/anie.202004857
Arquer F. P. G. d.; Talapin D. V.; Klimov V. I.; Arakawa Y.; Bayer M.; Sargent E. H. Semiconductor quantum dots: Technological progress and future challenges. Science, 2021, 373, eaaz8541. doi:10.1126/science.aaz8541http://dx.doi.org/10.1126/science.aaz8541
Pu C.; Qin H.; Gao Y.; Zhou J.; Wang P.; Peng X. Synthetic control of exciton behavior in colloidal quantum dots. J. Am. Chem. Soc., 2017, 139, 3302-3311. doi:10.1021/jacs.6b11431http://dx.doi.org/10.1021/jacs.6b11431
Morris-Cohen A. J.; Frederick M. T.; Lilly G. D.; McArthur E. A.; Weiss E. A. Organic surfactant-controlled composition of the surfaces of CdSe Quantum dots. J. Phys. Chem. Lett., 2010, 1, 1078-1081. doi:10.1021/jz100224qhttp://dx.doi.org/10.1021/jz100224q
Moreels I.; Fritzinger B.; Martins J. C.; Hens Z. Surface chemistry of colloidal PbSe nanocrystals. J. Am. Chem. Soc., 2008, 130, 15081-15086. doi:10.1021/ja803994mhttp://dx.doi.org/10.1021/ja803994m
Kopping J. T.; Patten T. E. Identification of acidic phosphorus-containing ligands involved in the surface chemistry of CdSe nanoparticles prepared in tri-N-octylphosphine oxide solvents. J. Am. Chem. Soc., 2008, 130, 5689-5698. doi:10.1021/ja077414dhttp://dx.doi.org/10.1021/ja077414d
Khanna P. K.; Singh N. Light emitting CdS quantum dots in PMMA: synthesis and optical studies. J. Lumin., 2007, 127, 474-482. doi:10.1016/j.jlumin.2007.02.037http://dx.doi.org/10.1016/j.jlumin.2007.02.037
Vasudevan D.; Gaddam R. R.; Trinchi A.; Cole I. Core-shell quantum dots: properties and applications. J.Alloys Compd., 2015, 636, 395-404. doi:10.1016/j.jallcom.2015.02.102http://dx.doi.org/10.1016/j.jallcom.2015.02.102
Liu C.; Li Z.; Hajagos T. J.; Kishpaugh D.; Chen D. Y.; Pei Q. Transparent ultra-high-loading quantum dot/polymer nanocomposite monolith for gamma scintillation. ACS Nano, 2017, 11, 6422-6430. doi:10.1021/acsnano.7b02923http://dx.doi.org/10.1021/acsnano.7b02923
Lesnyak V.; Dubavik A.; Plotnikov A.; Gaponik N.; Eychmüller A. One-step aqueous synthesis of blue-emitting glutathione-capped ZnSe1-xTex alloyed nanocrystals. Chem. Commun., 2010, 46, 886-888. doi:10.1039/b919986ahttp://dx.doi.org/10.1039/b919986a
Yuwen L.; Bao B.; Liu G.; Tian J.; Lu H.; Luo Z.; Zhu X.; Boey F.; Zhang H.; Wang L. One-pot encapsulation of luminescent quantum dots synthesized in aqueous solution by amphiphilic polymers. Small, 2011, 7, 1456-1463. doi:10.1002/smll.201002039http://dx.doi.org/10.1002/smll.201002039
Tao P.; Li Y.; Siegel R. W.; Schadler L. S. Transparent luminescent silicone nanocomposites filled with bimodal PDMS-brush-grafted CdSe quantum dots. J. Mater. Chem. C, 2013, 1, 86-94. doi:10.1039/c2tc00057ahttp://dx.doi.org/10.1039/c2tc00057a
Kocyigit A.; Bakir M.; Cifci O. S.; Enders B.; Jasiuk I.; Nayfeh M. H. Imparting optical functionality to aromatic thermosetting copolyester by luminescent silicon nanoparticles cross-linked via in situ thermal polymerization reaction. Eur. Polym. J., 2018, 103, 351-361. doi:10.1016/j.eurpolymj.2018.04.024http://dx.doi.org/10.1016/j.eurpolymj.2018.04.024
Lu S.; Sui L.; Liu Y.; Yong X.; Xiao G.; Yuan K.; Liu Z.; Liu B.; Zou B.; Yang B. White photoluminescent Ti3C2 MXene quantum dots with two-photon fluorescence. Adv. Sci., 2019, 6, 1801470. doi:10.1002/advs.201801470http://dx.doi.org/10.1002/advs.201801470
Ulku I.; Morlet-Savary F.; Lalevée J.; Acar H. Y. Homogenous photopolymerization of acrylic monomers initiated with ZnO-methacrylate in non-aqueous medium and production of luminescent nanocomposites. Polym. Chem., 2018, 9, 828-833. doi:10.1039/c7py02030ahttp://dx.doi.org/10.1039/c7py02030a
Li B.; Qin Y.; Li Z.; Zhang Y.; Li H. Smart luminescent hydrogel with superior mechanical performance based on polymer networks embedded with lanthanide containing clay nanocomposites. Nanoscale, 2021, 13, 11380-11386. doi:10.1039/d1nr01642chttp://dx.doi.org/10.1039/d1nr01642c
Wong Y. C.; De Andrew Ng J.; Tan Z. K. Perovskite-initiated photopolymerization for singly dispersed luminescent nanocomposites. Adv. Mater., 2018, 30, 1800774. doi:10.1002/adma.201800774http://dx.doi.org/10.1002/adma.201800774
张皓, 杨柏. 荧光纳米晶制备及其与聚合物的复合组装. 高等学校化学学报, 2008, 29, 217-229. doi:10.3321/j.issn:0251-0790.2008.02.001http://dx.doi.org/10.3321/j.issn:0251-0790.2008.02.001
Zhang H.; Cui Z.; Wang Y.; Zhang K.; Ji X.; Lü C.; Yang B.; Gao M. From water-soluble CdTe nanocrystals to fluorescent nanocrystal-polymer transparent composites using polymerizable surfactants. Adv. Mater., 2003, 15, 777-780. doi:10.1002/adma.200304521http://dx.doi.org/10.1002/adma.200304521
Zhang H.; Wang C.; Li M.; Zhang J.; Lu G.; Yang B. Fluorescent nanocrystal-polymer complexes with flexible processability. Adv. Mater., 2005, 17, 853-857. doi:10.1002/adma.200401303http://dx.doi.org/10.1002/adma.200401303
Pellegrino T.; Manna L.; Kudera S.; Liedl T.; Koktysh D.; Rogach A. L.; Keller S.; Rädler J.; Natile G.; Parak W. J. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett., 2004, 4, 703-707. doi:10.1021/nl035172jhttp://dx.doi.org/10.1021/nl035172j
Wang S.; Du L.; Jin Z.; Xin Y.; Mattoussi H. Enhanced stabilization and easy phase transfer of CsPbBr3 perovskite quantum dots promoted by high-affinity polyzwitterionic ligands. J. Am. Chem. Soc., 2020, 142, 12669-12680. doi:10.1021/jacs.0c03682http://dx.doi.org/10.1021/jacs.0c03682
Yang D.; Wang Y.; Li Z.; Xu Y.; Cheng F.; Li P.; Li H. Color-tunable luminescent hydrogels with tough mechanical strength and self-healing ability. J. Mater. Chem. C, 2018, 6, 1153-1159. doi:10.1039/c7tc05593ehttp://dx.doi.org/10.1039/c7tc05593e
Ozel T.; Nizamoglu S.; Sefunc M. A.; Samarskaya O.; Ozel I. O.; Mutlugun E.; Lesnyak V.; Gaponik N.; Eychmuller A.; Gaponenko S. V. Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots. ACS Nano, 2011, 5, 1328-1334. doi:10.1021/nn1030324http://dx.doi.org/10.1021/nn1030324
Zhao C.; Li H.; Wang Y.; Li K.; Hou J.; Ma Y.; Li M.; Song Y. A general layer-by-layer printing method for scalable high-resolution full-color flexible luminescent patterns. Adv. Opt. Mater., 2019, 7, 1900127. doi:10.1002/adom.201900127http://dx.doi.org/10.1002/adom.201900127
Kumar D. S.; Kumar B. J.; Mahesh H. M. Polyelectrolyte layer-by-layer spin assembly of aqueous CdTe quantum dot multilayered thin films. J. Alloys Compd., 2018, 735, 2558-2566. doi:10.1016/j.jallcom.2017.12.007http://dx.doi.org/10.1016/j.jallcom.2017.12.007
Zhou X.; Luo B.; Kang K.; Ma S.; Sun X.; Lan F.; Yi Q.; Wu Y. Multifunctional luminescent immuno-magnetic nanoparticles: toward fast, efficient, cell-friendly capture and recovery of circulating tumor cells. J. Mater. Chem. B, 2019, 7, 393-400. doi:10.1039/c8tb02701chttp://dx.doi.org/10.1039/c8tb02701c
Tian Y.; Chen M.; Zhang J.; Tong Y.; Wang C.; Wiederrecht G. P.; Chen S. Highly enhanced luminescence performance of leds via controllable layer-structured 3D photonic crystals and photonic crystal beads. Small Methods, 2018, 2, 1800104. doi:10.1002/smtd.201800104http://dx.doi.org/10.1002/smtd.201800104
Hill S. K. E.; Connell R.; Held J.; Peterson C.; Francis L.; Hillmyer M. A.; Ferry V. E.; Kortshagen U. Poly(methyl methacrylate) films with high concentrations of silicon quantum dots for visibly transparent luminescent solar concentrators. ACS Appl. Mater. Interfaces, 2020, 12, 4572-4578. doi:10.1021/acsami.9b22903http://dx.doi.org/10.1021/acsami.9b22903
Kim P.; Li C.; Riman R. E.; Watkins J. Refractive index tuning of hybrid materials for highly transmissive luminescent lanthanide particle-polymer composites. ACS Appl. Mater. Interfaces, 2018, 10, 9038-9047. doi:10.1021/acsami.8b00120http://dx.doi.org/10.1021/acsami.8b00120
Li D.; Wang L.; Ji W.; Wang H.; Yue X.; Sun Q.; Li L.; Zhang C.; Liu J.; Lu G.; Yu H.; Huang W. Embedding silver nanowires into a hydroxypropyl methyl cellulose film for flexible electrochromic devices with high electromechanical stability. ACS Appl. Mater. Interfaces, 2020, 13, 1735-1742. doi:10.1021/acsami.0c16066http://dx.doi.org/10.1021/acsami.0c16066
Luo H.; Yang M.; Li D.; Wang Q.; Zou W.; Xu J.; Zhao N. Transparent super-repellent surfaces with low haze and high jet impact resistance. ACS Appl. Mater. Interfaces, 2021, 13, 13813-13821. doi:10.1021/acsami.0c23055http://dx.doi.org/10.1021/acsami.0c23055
Hovestadt H. Jena Glass: and Its Scientific and Industrial Applications. London: Macmillan, 1902. 1-81.
Tao P.; Li Y.; Siegel R. W.; Schadler L. S. Transparent dispensible high-refractive index ZrO2/epoxy nanocomposites for LED encapsulation. J. Appl. Polym. Sci., 2013, 130, 3785-3793. doi:10.1002/app.39652http://dx.doi.org/10.1002/app.39652
Cai B.; Kaino T.; Sugihara O. Sulfonyl-containing polymer and its alumina nanocomposite with high Abbe number and high refractive index. Opt. Mater. Express, 2015, 5, 1210-1216. doi:10.1364/ome.5.001210http://dx.doi.org/10.1364/ome.5.001210
Enomoto K.; Kikuchi M.; Narumi A.; Kawaguchi S. Surface modifier-free organic-inorganic hybridization to produce optically transparent an d highly refractive bulk materials composed of epoxy resins and ZrO2 nanoparticles. ACS Appl. Mater. Interfaces, 2018, 10, 13985-13998. doi:10.1021/acsami.8b00422http://dx.doi.org/10.1021/acsami.8b00422
Chen Y.; Qin Z.; Tang G.; Wei L.; Du H.; Du W. Balancing optical property and enhancing stability for high-refractive index polythiourethane with assistance of cubic thiol-functionalized silsesquioxanes. ACS Appl. Polym. Mater., 2021, 3, 153-161. doi:10.1021/acsapm.0c00917http://dx.doi.org/10.1021/acsapm.0c00917
Shaker L. M.; Al-Amiery A. A.; Kadhum A. A. H.; Takriff M. S. Manufacture of contact lens of nanoparticle-doped polymer complemented with ZEMAX. Nanomaterials, 2020, 10, 2028. doi:10.3390/nano10102028http://dx.doi.org/10.3390/nano10102028
Banerjee M.; Jain A.; Mukherjee G. S. Microstructural and optical properties of polyvinyl alcohol/manganese chloride composite film. Polym. Compos., 2019, 40, E765-E775.
Evora V. M. F.; Shukla A. Fabrication, characterization, and dynamic behavior of polyester/TiO2 nanocomposites. Mater. Sci. Eng. A, 2003, 361, 358-366. doi:10.1016/s0921-5093(03)00536-7http://dx.doi.org/10.1016/s0921-5093(03)00536-7
Kubiak J. M.; Yan J.; Pietrasik J.; Matyjaszewski K. Toughening PMMA with fillers containing polymer brushes synthesized via atom transfer radical polymerization (ATRP). Polymer, 2017, 117, 48-53. doi:10.1016/j.polymer.2017.04.012http://dx.doi.org/10.1016/j.polymer.2017.04.012
Qi X.; Hou Y.; Yang M. Scalable synthesis of multifunctional epidermis-like smart coatings. Adv. Funct. Mater., 2019, 29. doi:10.1002/adfm.201903984http://dx.doi.org/10.1002/adfm.201903984
Wassel E.; Es-Souni M.; Laghrissi A.; Roth A.; Dietze M.; Es-Souni M. Scratch resistant non-fouling surfaces via grafting non-fouling polymers on the pore walls of supported porous oxide structures. Mater. Design, 2019, 163, 107542. doi:10.1016/j.matdes.2018.107542http://dx.doi.org/10.1016/j.matdes.2018.107542
Sun F.; Xu J.; Liu T.; Li F.; Poo Y.; Zhang Y.; Xiong R.; Huang C.; Fu J. An autonomously ultrafast self-healing, highly colourless, tear-resistant and compliant elastomer tailored for transparent electromagnetic interference shielding films integrated in flexible and optical electronics. Mater. Horiz., 2021, 8, 3356-3367. doi:10.1039/d1mh01199ehttp://dx.doi.org/10.1039/d1mh01199e
Biswas S. K.; Tanpichai S.; Witayakran S.; Yang X.; Shams M. I.; Yano H. Thermally superstable cellulosic-nanorod-reinforced transparent substrates featuring microscale surface patterns. ACS Nano., 2019, 13, 2015-2023. doi:10.1021/acsnano.8b08477http://dx.doi.org/10.1021/acsnano.8b08477
Fujisawa S.; Togawa E.; Kuroda K. Facile route to transparent, strong, and thermally stable nanocellulose/polymer nanocomposites from an aqueous pickering emulsion. Biomacromolecules, 2016, 18, 266-271. doi:10.1021/acs.biomac.6b01615http://dx.doi.org/10.1021/acs.biomac.6b01615
Mamun M. A. A.; Soutome Y.; Kasahara Y.; Meng Q.; Akasaka S.; Fujimori A. Fabrication of transparent nanohybrids with heat resistance using high-density amorphous formation and uniform dispersion of nanodiamond. ACS Appl. Mater. Interfaces, 2015, 7, 17792-17801. doi:10.1021/acsami.5b04083http://dx.doi.org/10.1021/acsami.5b04083
Yan L.; Xu Z.; Wang X. Synergistic effects of organically modified montmorillonite on the flame-retardant and smoke suppression properties of transparent intumescent fire-retardant coatings. Prog. Org. Coat., 2018, 122, 107-118. doi:10.1016/j.porgcoat.2018.05.016http://dx.doi.org/10.1016/j.porgcoat.2018.05.016
Ye H.; Zhu L.; Li W.; Liu H.; Chen H. Constructing fluorine-free and cost-effective superhydrophobic surface with normal-alcohol-modified hydrophobic SiO2 nanoparticles. ACS Appl. Mater. Interfaces, 2017, 9, 858-867. doi:10.1021/acsami.6b12820http://dx.doi.org/10.1021/acsami.6b12820
Priolo M. A.; Gamboa D.; Holder K. M.; Grunlan J. C. Super gas barrier of transparent polymer-clay multilayer ultrathin films. Nano Lett., 2010, 10, 4970-4974. doi:10.1021/nl103047khttp://dx.doi.org/10.1021/nl103047k
Aulin C.; Karabulut E.; Tran A.; Wågberg L.; Lindström T. Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties. ACS Appl. Mater. Interfaces, 2013, 5, 7352-7359. doi:10.1021/am401700nhttp://dx.doi.org/10.1021/am401700n
Tao S.; Feng T.; Zheng C.; Zhu S.; Yang B. Carbonized polymer dots: a brand new perspective to recognize luminescent carbon-based nanomaterials. J. Phys. Chem. Lett., 2019, 10, 5182-5188. doi:10.1021/acs.jpclett.9b01384http://dx.doi.org/10.1021/acs.jpclett.9b01384
Pan K.; Liu C.; Zhu Z.; Feng T.; Tao S.; Yang B. Soft-hard segment combined carbonized polymer dots for flexible optical film with superhigh surface hardness. ACS Appl. Mater. Interfaces, 2022, 14, 14504-14512. doi:10.1021/acsami.2c00702http://dx.doi.org/10.1021/acsami.2c00702
Liu J.; Li R.; Yang B. Carbon dots: a new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci., 2020, 6, 2179-2195. doi:10.1021/acscentsci.0c01306http://dx.doi.org/10.1021/acscentsci.0c01306
朱志承, 杨柏. 基于碳点与适配体的荧光生物传感器制备与应用. 发光学报, 2021, 42, 196-1124. doi:10.37188/CJL.20210161http://dx.doi.org/10.37188/CJL.20210161
孙海珠, 杨柏, 杨国夺. 碳点的设计合成、结构调控及应用. 高等学校化学学报, 2021, 42, 349-365.
Zeng Q.; Feng T.; Tao S.; Zhu S.; Yang B. Precursor-dependent structural diversity in luminescent carbonized polymer dots (CPDs): the nomenclature. Light: Sci. Appl., 2021, 10, 1-13. doi:10.1038/s41377-021-00579-6http://dx.doi.org/10.1038/s41377-021-00579-6
茹艺, 卢思宇. 碳化聚合物点: 一种新型的单颗粒有机无机杂化体系. 高分子学报, 2022, 53, 812-827. doi:10.11777/j.issn1000-3304.2022.22065http://dx.doi.org/10.11777/j.issn1000-3304.2022.22065
0
Views
215
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution