浏览全部资源
扫码关注微信
1.高分子物理与化学国家重点实验室 中国科学院长春应用化学研究所 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
Zhi-yuan Xie, E-mail: xiezy_n@ciac.ac.cn
Published:20 January 2023,
Published Online:17 September 2022,
Received:04 May 2022,
Accepted:22 June 2022
扫 描 看 全 文
吴江,李右占,汤浩等.基于自组装修饰银纳米线透明电极的柔性有机太阳能电池[J].高分子学报,2023,54(01):78-86.
Wu Jiang,Li You-zhan,Tang Hao,et al.Flexible Organic Solar Cells Based on Self-assembly Modified Silver Nanowires Transparent Electrode[J].ACTA POLYMERICA SINICA,2023,54(01):78-86.
吴江,李右占,汤浩等.基于自组装修饰银纳米线透明电极的柔性有机太阳能电池[J].高分子学报,2023,54(01):78-86. DOI: 10.11777/j.issn1000-3304.2022.22165.
Wu Jiang,Li You-zhan,Tang Hao,et al.Flexible Organic Solar Cells Based on Self-assembly Modified Silver Nanowires Transparent Electrode[J].ACTA POLYMERICA SINICA,2023,54(01):78-86. DOI: 10.11777/j.issn1000-3304.2022.22165.
银纳米线(AgNWs)透明电极具有出色的挠曲性和高电导率,是一类非常有潜力的柔性透明电极材料. 然而AgNWs透明电极还存在表面粗糙度大、与衬底的附着力差、表面功函数与活性层能级不匹配等问题. 针对上述问题,采用刮涂方法将AgNWs嵌入聚酰亚胺薄膜中,获得表面平整的AgNWs柔性透明电极,并通过Ag与巯基基团相互作用将五氟苯硫酚自组装到AgNWs电极表面,使AgNWs电极表面功函数从未处理的-4.88 eV提高到-5.06 eV,从而使其与活性层能级更加匹配. 利用该电极作为柔性透明电极,在不采用任何阳极界面层的情况下制备的柔性有机太阳能电池最佳能量转换效率达到11.77%. 本工作为AgNWs柔性电极的制备及功函数调控提供了新的研究思路,并为发展基于AgNWs柔性电极的高效柔性有机太阳能电池提供了一种简单有效的解决方案.
Silver nanowires (AgNWs) are a kind of flexible transparent electrode material with superior flexibility and high conductivity. However
AgNWs-based transparent electrode films always suffer some problems
such as large surface roughness
poor adhesion to the substrate
and mismatching between its work function and energy level of the active layer. In this work
the embedded AgNWs in polyimide (PI) substrate was prepared by blade-coating method
which demonstrates the AgNWs transparent electrode with smooth surface. Pentafluorothiophenol (PFTP) was self-assembled on the surface of AgNWs through interaction between Ag and sulfhydryl group
so that the work function of AgNWs electrode is increased from -4.88 eV to -5.06 eV
rendering it more matched with the energy level of the active layer. Based on the PFTP-modified AgNWs/PI substrate
the flexible organic solar cell without hole transport layer was fabricated by blade coating
and a power conversion efficiency of 11.77% was obtained. This work provides a novel idea for the preparation and work function regulation of AgNWs-based flexible electrode/substrate
and suggests a simple and effective method for the development of efficient flexible organic solar cells based on AgNWs flexible electrode.
银纳米线自组装柔性有机太阳能
Silver nanowiresSelf-assemblyFlexibleOrganic solar cell
Hecht D. S.; Hu L. B.; Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater., 2011, 23, 1482-1513. doi:10.1002/adma.201003188http://dx.doi.org/10.1002/adma.201003188
Du J. H.; Pei S. F.; Ma L. P.; Cheng H. M. 25th Anniversary article: carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices. Adv. Mater., 2014, 26, 1958-1991. doi:10.1002/adma.201304135http://dx.doi.org/10.1002/adma.201304135
Ellmer K. Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics, 2012, 6, 809-817. doi:10.1038/nphoton.2012.282http://dx.doi.org/10.1038/nphoton.2012.282
Kumar A.; Zhou C. W. The race to replace tin-doped indium oxide: which material will win? ACS Nano, 2010, 4, 11-14. doi:10.1021/nn901903bhttp://dx.doi.org/10.1021/nn901903b
Hu L.; Wu H.; Cui Y. Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull., 2011, 36, 760-765. doi:10.1557/mrs.2011.234http://dx.doi.org/10.1557/mrs.2011.234
Kuang P.; Park J. M.; Leung W.; Mahadevapuram R. C.; Nalwa K. S.; Kim T. G.; Chaudhary S.; Ho K. M.; Constant K. A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance. Adv. Mater., 2011, 23, 2469-2473. doi:10.1002/adma.201100419http://dx.doi.org/10.1002/adma.201100419
Zhai H.; Li Y.; Chen L.; Wang X.; Shi L.; Wang R.; Sun J. Semi-transparent polymer solar cells with all-copper nanowire electrodes. Nano Res., 2018, 11, 1956-1966. doi:10.1007/s12274-017-1812-zhttp://dx.doi.org/10.1007/s12274-017-1812-z
Zhang D. H.; Ryu K.; Liu X. L. ; Polikarpov E.; Ly J.; Tompson M. E.; Zhou C. W. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett., 2006, 6, 1880-1886. doi:10.1021/nl0608543http://dx.doi.org/10.1021/nl0608543
Liu K.; Yao Y.; Lv T.; Li H.; Li N.; Chen Z.; Qian G.; Chen T. Textile-like electrodes of seamless graphene/nanotubes for wearable and stretchable supercapacitors. J. Power Sources, 2020, 446, 227355. doi:10.1016/j.jpowsour.2019.227355http://dx.doi.org/10.1016/j.jpowsour.2019.227355
Jiang Z.; Fukuda K.; Xu X.; Park S.; Inoue D.; Jin H.; Saito M.; Osaka I.; Takimiya K.; Someya T. Reverse-offset printed ultrathin ag mesh for robust conformal transparent electrodes for high-performance organic photovoltaics. Adv. Mater., 2018, 30, e1707526. doi:10.1002/adma.201870190http://dx.doi.org/10.1002/adma.201870190
Zeng G.; Zhang J.; Chen X.; Gu H.; Li Y.; Li Y. Breaking 12% efficiency in flexible organic solar cells by using a composite electrode. Sci. China Chem., 2019, 62, 851-858. doi:10.1007/s11426-018-9430-8http://dx.doi.org/10.1007/s11426-018-9430-8
Sun Y.; Chang M.; Meng L.; Wan X.; Gao H.; Zhang Y.; Zhao K.; Sun Z.; Li C.; Liu S.; Wang H.; Liang J.; Chen Y. Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat. Electron., 2019, 2, 513-520. doi:10.1038/s41928-019-0315-1http://dx.doi.org/10.1038/s41928-019-0315-1
Zhao Y. f.; Zou W. j.; Li H.; Lu K.; Yan W.; Wei Z. X. Large-area, flexible polymer solar cell based on silver nanowires as transparent electrode by roll-to-roll printing. Chinese J. Polym. Sci., 2016, 35, 261-268. doi:10.1007/s10118-017-1875-zhttp://dx.doi.org/10.1007/s10118-017-1875-z
Qu T. Y.; Zuo L. J.; Chen J. D.; Shi X.; Zhang T.; Li L.; Shen K. C.; Ren H.; Wang S.; Xie F. M.; Li Y. Q.; Jen A. K. Y.; Tang J. X. Biomimetic electrodes for flexible organic solar cells with efficiencies over 16%. Adv. Opt. Mater., 2020, 8, 2000669. doi:10.1002/adom.202000669http://dx.doi.org/10.1002/adom.202000669
Llobel M. A.; Riviere G.; Arrive C.; Courtel S.; Cros S.; Matheron M. Impact of interface layers on luminescence imaging of organic solar cells: discriminating ETL from HTL defects. ACS Appl. Mater. Interfaces, 2020, 12, 26293-26300. doi:10.1021/acsami.0c07555http://dx.doi.org/10.1021/acsami.0c07555
Zhang X.; Wu J.; Liu H.; Wang J.; Zhao X.; Xie Z. Efficient flexible polymer solar cells based on solution-processed reduced graphene oxide-assisted silver nanowire transparent electrode. Org. Electron., 2017, 50, 255-263. doi:10.1016/j.orgel.2017.07.055http://dx.doi.org/10.1016/j.orgel.2017.07.055
Li L.; Sun B.; Li W.; Jiang L.; Zhou Y.; Ma J.; Chen S.; Ning X.; Zhou F. L. Flexible and highly conductive AgNWs/PEDOT: PSs functionalized aramid nonwoven fabric for high‐performance electromagnetic interference shielding and joule heating. Macromol. Mater. Eng., 2021, 306, 2100365. doi:10.1002/mame.202100365http://dx.doi.org/10.1002/mame.202100365
Ban D. K.; Patel M.; Nguyen T. T.; Kim J. All-transparent oxide photovoltaics: AZO embedded ZnO/NiO/AgNW band selective high-speed electric power window. Adv. Electron. Mater., 2019, 5, 1900348. doi:10.1002/aelm.201900348http://dx.doi.org/10.1002/aelm.201900348
Wang Y.; Hu Y.; Han D.; Yuan Q.; Cao T.; Chen N.; Zhou D.; Cong H.; Feng L. Ammonia-treated graphene oxide and pedot:Pss as hole transport layer for high-performance perovskite solar cells with enhanced stability. Org. Electron., 2019, 70, 63-70. doi:10.1016/j.orgel.2019.03.048http://dx.doi.org/10.1016/j.orgel.2019.03.048
Kim G.; Kong J.; Kim J.; Kang H.; Back H.; Kim H.; Lee K. Overcoming the light-soaking problem in inverted polymer solar cells by introducing a heavily doped titanium sub-oxide functional layer. Adv. Energy Mater., 2015, 5, 1401298. doi:10.1002/aenm.201401298http://dx.doi.org/10.1002/aenm.201401298
Han Y.; Dong H.; Pan W.; Liu B.; Chen X.; Huang R.; Li Z.; Li F.; Luo Q.; Zhang J.; Wei Z.; Ma C. Q. An efficiency of 16.46% and a T80 lifetime of over 4000 h for the PM6:Y6 inverted organic solar cells enabled by surface acid treatment of the zinc oxide electron transporting layer. ACS Appl. Mater. Interfaces, 2021, 13, 17869-17881.
Qin F.; Sun L.; Chen H.; Liu Y.; Lu X.; Wang W.; Liu T.; Dong X.; Jiang P.; Jiang Y.; Wang L.; Zhou Y. 54 cm2 large-area flexible organic solar modules with efficiency above 13. Adv. Mater., 2021, 33, e2103017.
Chong L. W.; Lee Y. L.; Wen T. C.; Guo T. F. Self-assembled monolayer-modified Ag anode for top-emitting polymer light-emitting diodes. Appl. Phys. Lett., 2006, 89, 233513. doi:10.1063/1.2404589http://dx.doi.org/10.1063/1.2404589
Kang S.; Kim T.; Cho S.; Lee Y.; Choe A.; Walker B.; Ko S. J.; Kim J. Y.; Ko H. Capillary printing of highly aligned silver nanowire transparent electrodes for high-performance optoelectronic devices. Nano Lett., 2015, 15, 7933-7942. doi:10.1021/acs.nanolett.5b03019http://dx.doi.org/10.1021/acs.nanolett.5b03019
Huang P. R.; He Y.; Cao C.; Lu Z. H. The origin of the high work function of chlorinated indium tin oxide. NPG Asia Mater., 2013, 5, e57. doi:10.1038/am.2013.33http://dx.doi.org/10.1038/am.2013.33
Meng H.; Liao C.; Deng M.; Xu X.; Yu L.; Peng Q. 18.77% efficiency organic solar cells promoted by aqueous solution processed cobalt (Ⅱ) acetate hole transporting layer. Angew. Chem. Int. Ed. Engl., 2021, 60, 22554-22561.
Yuan J.; Zhang Y.; Zhou L.; Zhang G.; Yip H. L.; Lau T. K.; Lu X.; Zhu C.; Peng H.; Johnson P. A.; Leclerc M.; Cao Y.; Ulanski J.; Li Y.; Zou Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3, 1140-1151. doi:10.1016/j.joule.2019.01.004http://dx.doi.org/10.1016/j.joule.2019.01.004
Chen X.; Xu G.; Zeng G.; Gu H.; Chen H.; Xu H.; Yao H.; Li Y.; Hou J.; Li Y. Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a "welding" flexible transparent electrode. Adv. Mater., 2020, 32, e1908478. doi:10.1002/adma.201908478http://dx.doi.org/10.1002/adma.201908478
Zeng G.; Chen W.; Chen X.; Hu Y.; Chen Y.; Zhang B.; Chen H.; Sun W.; Shen Y.; Li Y.; Yan F.; Li Y. Realizing 17.5% efficiency flexible organic solar cells via atomic-level chemical welding of silver nanowire electrodes. J Am. Chem. Soc., 2022, 144, 8658-8668.
0
Views
121
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution