浏览全部资源
扫码关注微信
苏州大学软凝聚态物理及交叉研究中心 物理科学与技术学院 苏州 215000
Wen-de Tian, E-mail: tianwende@suda.edu.cn
Published:20 January 2023,
Published Online:19 September 2022,
Received:06 June 2022,
Accepted:27 June 2022
扫 描 看 全 文
秦超然,黄瑞静,宋祥燕等.聚酰胺-胺树枝形大分子导致α-突触核蛋白聚集动力学变缓[J].高分子学报,2023,54(01):87-94.
Qin Chao-ran,Huang Rui-jing,Song Xiang-yan,et al.The Aggregation Dynamics of α-Synucleins Slowed Down by Polyamindoamine[J].ACTA POLYMERICA SINICA,2023,54(01):87-94.
秦超然,黄瑞静,宋祥燕等.聚酰胺-胺树枝形大分子导致α-突触核蛋白聚集动力学变缓[J].高分子学报,2023,54(01):87-94. DOI: 10.11777/j.issn1000-3304.2022.22180.
Qin Chao-ran,Huang Rui-jing,Song Xiang-yan,et al.The Aggregation Dynamics of α-Synucleins Slowed Down by Polyamindoamine[J].ACTA POLYMERICA SINICA,2023,54(01):87-94. DOI: 10.11777/j.issn1000-3304.2022.22180.
采用基于Martini力场的粗粒化分子动力学模拟研究了聚酰胺-胺(PAMAM)树枝形大分子对
α
-突触核蛋白NAC区域聚集行为的影响,发现PAMAM树枝形分子的存在延缓了NAC区域聚集过程,增长了聚集体形成的时间. 团簇形成的主要时间段里,大小与时间满足一定标度关系(~
<math id="M1"><msup><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msup><mo stretchy="false">)</mo></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43663717&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43663715&type=
3.47133350
3.13266683
且存在PAMAM时,标度指数
<math id="M2"><mi>γ</mi></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43663719&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43663718&type=
1.26999998
2.96333337
减小. PAMAM大分子的代数和浓度越高,聚集体形成时间就越长;研究结果支持实验提出的“动力学抑制”猜想.
Inhibition of fibril assembly is a potential therapeutic strategy in neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. The NAC
a fragment of
α
-synuclein
is considered to be the key region of
α
-synuclein that causes Parkinson's disease. It has been recently shown that the polyamidoamine (PAMAM) dendrimer is promising candidate for the treatment of Parkinson's diseases. However
it is still not very clear that how and why the PAMAM could inhibit the protein aggegration. In this study
the interaction between PAMAM dendrimers and NAC fragments was investigated by molecular dynamics simulation.The coarse-grained Martini field was adopted for PAMAM and proteins and the effects of generation and concentration of PAMAM dendrimers on the aggregation dynamics were studied. We mainly built nine systems and G3-G5 PAMAM dendrimers were used. The systems for
α
-synucleins of 10.4 mmol/L were built without PAMAM
and with 0.80 and 1.04 mmol/L PAMAM dendrimers
respectively. All systems are simulated with a long time of 5000 ns. In the Martini force field
the real time is about 20 μs. It was found that the addition of PAMAM molecules could slow down the aggregation process and increase the formation time of the largest cluster. The larger the dendrimer generation and the higher concentration
the larger the degree of inhibition of the NAC aggregation. Taking the existence of 5 clusters in the box as the criterion
the aggregation time is about 180 ns for the system without PAMAM dendrimers
~230 ns for the system with five G3-PAMAM dendrimers
~400 ns for the system with five G4-PAMAM dendrimers
~400 ns for the system with three G5-PAMAM dendrimers
and ~500 ns for the system with five G5-PAMAM dendrimers. Meanwhile
there exists a scaling relation between cluster size
S
and simulation time
t
with
S
~
<math id="M3"><msup><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msup></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43663739&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43663738&type=
2.20133328
2.79399991
. When adding PAMAM
<math id="M4"><mi>γ</mi></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43663728&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43663740&type=
1.43933344
3.21733332
=0.54
which is smaller than that without PAMAM
<math id="M5"><mi>γ</mi></math>
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43663732&type=
http://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=43663730&type=
1.43933344
3.21733332
=0.69. In addition
in our parameter spaces
the disaggeration of the existing NAC cluster was observed when dendrimers were added in the system. Our results are in good agreement with experimental findings and support the hypothesis of kinetic inhibition
in which case
the final amount of aggegrates remained unchanged with the varying lag time.
分子动力学模拟聚酰胺-胺树枝形分子蛋白质聚集
Molecular dynamics simulationPolyamindoamine dendrimerProtein aggregation
张倩, 袁直. 基于多重弱相互作用的Aβ聚集抑制剂研究. 高分子学报, 2018, 7, 776-785. doi:10.11777/j.issn1000-3304.2018.18025http://dx.doi.org/10.11777/j.issn1000-3304.2018.18025
Ilie I. M.; Caflisch A. Simulation studies of amyloidogenic polypeptides and their aggregates. Chem. Rev., 2019, 119, 6956-6993. doi:10.1021/acs.chemrev.8b00731http://dx.doi.org/10.1021/acs.chemrev.8b00731
Rekas A.; Lo V.; Gadd G. E.; Cappai R.; Yun S. I. PAMAM dendrimers as potential agents against fibrillation of α-synuclein, a Parkinson’s disease-related protein. Macromol. Biosci., 2009, 9, 230-238. doi:10.1002/mabi.200800242http://dx.doi.org/10.1002/mabi.200800242
Mahul-Mellier A. L.; Burtscher J.; Maharjan N.; Weerens L.; Croisier M.; Kuttler F.; Leleu M.; Knott G. W.; Lashuel H. A. The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc. Natl. Acad. Sci. USA, 2020, 117, 4971-4982. doi:10.1073/pnas.1913904117http://dx.doi.org/10.1073/pnas.1913904117
Lorenzen N.; Lemminger L.; Pedersen J. N.; Nielsen S. B.; Otzen D. E. The N-terminus of α-synuclein is essential for both monomeric and oligomeric interactions with membranes. FEBS. Lett., 2014, 588, 497-502. doi:10.1016/j.febslet.2013.12.015http://dx.doi.org/10.1016/j.febslet.2013.12.015
Uversky, V. N. A protein-chameleon: conformational plasticity of α-synuclein, a disordered protein involved in neurodegenerative disorders. J. Biomol. Struct. Dyn., 2003, 21, 211-234. doi:10.1080/07391102.2003.10506918http://dx.doi.org/10.1080/07391102.2003.10506918
Koo E. H.; Lansbury P. T.; Kelly J. W. Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc. Natl. Acad. Sci. USA, 1999, 96, 9989-9990. doi:10.1073/pnas.96.18.9989http://dx.doi.org/10.1073/pnas.96.18.9989
Rochet J. C.; Lansbury P. T. Amyloid fibrillogenesis: themes and variations. Curr. Opin. Struc. Biol., 2000, 10, 60-68. doi:10.1016/s0959-440x(99)00049-4http://dx.doi.org/10.1016/s0959-440x(99)00049-4
Sleutel M.; van den Broeck I.; van Gerven N.; Feuillie C.; Jonckheere W.; Valotteau C.; Dufrêne Y. F.; Remaut H. Nucleation and growth of a bacterial functional amyloid at single-fiber resolution. Nat. Chem. Biol., 2017, 13, 902-908. doi:10.1038/nchembio.2413http://dx.doi.org/10.1038/nchembio.2413
Ueda K.; Fukushima H.; Masliah E.; Xia Y.; Iwai A.; Yoshimoto M.; Otero D. A. C.; Kondo J.; Ihara Y.; Saitoh T. Molecular cloning of cDNA encoding an unrecognized component of amyloid in alzheimer disease. Proc. Natl. Acad. Sci. USA., 1993, 90, 11282-11286. doi:10.1073/pnas.90.23.11282http://dx.doi.org/10.1073/pnas.90.23.11282
Voropai E. S.; Samtsov M. P.; Kaplevskii K. N.; Maskevich A. A.; Stepuro V. I.; Povarova O. I.; Kuznetsova I. M.; Turoverov K. K.; Fink A. L.; Uverskii V. N. Spectral properties of thioflavin T and its complexes with amyloid fibrils. J. Spectrosc., 2003, 70, 868-874. doi:10.1023/b:japs.0000016303.37573.7ehttp://dx.doi.org/10.1023/b:japs.0000016303.37573.7e
Tian W. D.; Ma Y. Q. Theoretical and computational studies of dendrimers as delivery vectors. Chem. Soc. Rev., 2013, 42, 705-727. doi:10.1039/c2cs35306ghttp://dx.doi.org/10.1039/c2cs35306g
Tian W. D.; Ma Y. Q. pH-responsive dendrimers interacting with lipid membranes. Soft Matter., 2012, 8, 2627-2632. doi:10.1039/c2sm06624fhttp://dx.doi.org/10.1039/c2sm06624f
Kim I.; Pascal T. A.; Park S. J.; Diallo M.; Goddard W. A.; Jung Y. pH-Dependent conformations for hyperbranched poly(ethylenimine) from all-atom molecular dynamics. Macromolecules, 2018, 51, 2187-2194. doi:10.1021/acs.macromol.7b02573http://dx.doi.org/10.1021/acs.macromol.7b02573
Tu C. K.; Chen K.; Tian W. D.; Ma Y. Q. Computational investigations of a peptide-modified dendrimer interacting with lipid membranes. Macromol. Rapid Commun., 2013, 34, 1237-1242. doi:10.1002/marc.201300360http://dx.doi.org/10.1002/marc.201300360
郭永坤, 王宛, 田文得, 陈康. 表面修饰富勒烯的聚酰胺-胺树枝状分子与生物膜的相互作用研究. 高分子学报, 2016, (10), 1418-1424. doi:10.11777/j.issn1000-3304.2016.16039http://dx.doi.org/10.11777/j.issn1000-3304.2016.16039
胡晖, 曹中林, 范晓东, 黄怡. 温度及pH敏感的树枝状高分子衍生物合成及药物控制释放研究. 高分子学报, 2006, (4), 574-580. doi:10.3321/j.issn:1000-3304.2006.04.005http://dx.doi.org/10.3321/j.issn:1000-3304.2006.04.005
李芸焜, 李亚超, 徐翔晖, 顾忠伟. 生物可裂解树状大分子组装体与智能型基因传递系统. 高分子学报, 2017, (2), 375-385. doi:10.11777/j.issn1000-3304.2017.16301http://dx.doi.org/10.11777/j.issn1000-3304.2017.16301
贾兰, 徐建平, 计剑, 沈家骢. 细胞膜仿生修饰树枝状聚酰胺-胺的研究. 高分子学报, 2008, (11), 1108-1112. doi:10.3321/j.issn:1000-3304.2008.11.014http://dx.doi.org/10.3321/j.issn:1000-3304.2008.11.014
Shen Z. L.; Tian W. D.; Chen K.; Ma Y. Q. Molecular dynamics simulation of G-actin interacting with PAMAM dendrimers. J. Mol. Graph. Model., 2018, 84, 145-151. doi:10.1016/j.jmgm.2018.06.012http://dx.doi.org/10.1016/j.jmgm.2018.06.012
Wassenaar T. A.; Ingólfsson H. I.; Böckmann R. A.; Tieleman D. P.; Marrink S. J. Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J. Chem. Theory. Comput., 2015, 11, 2144-2155. doi:10.1021/acs.jctc.5b00209http://dx.doi.org/10.1021/acs.jctc.5b00209
Kutzner C.; Páll S.; Fechner M.; Esztermann A.; de Groot B. L.; Grubmüller H. Best bang for your buck: GPU nodes for GROMACS biomolecular simulations. J. Comput. Chem., 2015, 36, 1990-2008. doi:10.1002/jcc.24030http://dx.doi.org/10.1002/jcc.24030
Kutzner C.; Páll S.; Fechner M.; Esztermann A.; de Groot B. L.; Grubmüller H. More bang for your buck: improved use of GPU nodes for GROMACS 2018. J. Comput. Chem., 2019, 40, 2418-2431. doi:10.1002/jcc.26011http://dx.doi.org/10.1002/jcc.26011
Darden T.; York D.; Pedersen L. Particle mesh ewald: an Nlog(N) method for ewald sums in large systems. J. Chem. Phys., 1993, 98, 10089-10092. doi:10.1063/1.464397http://dx.doi.org/10.1063/1.464397
Berendsen H. J. C.; Postma J. P. M.; van Gunsteren W. F.; Dinola A.; Haak J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81, 3684-3690. doi:10.1063/1.448118http://dx.doi.org/10.1063/1.448118
Parrinello M.; Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys., 1981, 52, 7182-7190. doi:10.1063/1.328693http://dx.doi.org/10.1063/1.328693
Milowska K.; Malachowska M.; Gabryelak T. PAMAM G4 dendrimers affect the aggregation of α-synuclein. Int. J. Biol. Macromol., 2011, 48, 742-746. doi:10.1016/j.ijbiomac.2011.02.021http://dx.doi.org/10.1016/j.ijbiomac.2011.02.021
Assarsson A.; Linse S.; Cabaleiro-Lago C. Effects of polyamino acids and polyelectrolytes on amyloid β fibril formation. Langmuir, 2014, 30, 8812-8818. doi:10.1021/la501414jhttp://dx.doi.org/10.1021/la501414j
Zaman M.; Ahmad E.; Qadeer A.; Rabbani G.; Khan R. H. Nanoparticles in relation to peptide and protein aggregation. Int. J. Nanomed., 2014, 9, 899-912. doi:10.2147/ijn.s54171http://dx.doi.org/10.2147/ijn.s54171
Klajnert B.; Cortijo-Arellano M.; Cladera J.; Bryszewsks M. Influence of dendrimer's structure on its activity against amyloid fibril formation. Biochem. Bioph. Res. Co., 2006, 345, 21-28. doi:10.1016/j.bbrc.2006.04.041http://dx.doi.org/10.1016/j.bbrc.2006.04.041
0
Views
42
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution