Published:20 February 2023,
Published Online:21 September 2022,
Received:15 May 2022,
Accepted:18 July 2022
Scan for full text
Cite this article
Silicone rubber (SR) is a widely used elastomer material. However, due to the complicated network structure, it is difficult to realize the rational design of SR. In this study, we attempt to build the correlation between the microscopic and macroscopic mechanical properties of SR from the perspective of single-chain elasticity. First, the single-chain elasticities (including entropic and enthalpic elasticities) of the main component chains (siloxane chain) and cross-linking chains (carbon-carbon chain) in methyl vinyl SR are obtained by single-molecule atomic force microscopy. Subsequently, the theoretical single-chain elasticities of the above two polymer chains are obtained by quantum mechanical calculations. The theoretical results are consistent with the experimental results, indicating that the inherent elasticities of the two polymer chains in the quasi-undisturbed environment have been obtained. Next, the inherent elasticities of the two polymer chains are integrated into the traditional statistical model of rubber. Finally, it is found that the mechanical properties of three different SRs over the entire deformation range can be perfectly described by the new model (called TCQMG model) with adjustable parameters. In addition, the effects of multiple parameters on the mechanical properties of SR are analyzed by the TCQMG model. This model will help bridge the gap between the single-molecule mechanics and macroscopic properties of SR elastomer materials, and can provide theoretical guidance for the rational design of new SRs. Considering the similarity in cross-linking network structure between SR and other elastomers, it is expected that the TCQMG model can be used as a general model to describe the macroscopic properties of these elastomers.
从硅橡胶的单分子弹性出发,利用参数可调的双组分量子力学高斯(TCQMG)模型描述了硅橡胶的宏观力学性能,有助于建立硅橡胶宏观和微观性质之间的关联.
硅橡胶是一类无机-有机杂化的弹性体材料,由硅氧烷无机骨架和甲基、乙烯基、苯基等有机基团组成[
硅橡胶作为一种合成橡胶,是仿照天然橡胶的交联网络结构发展而来的. 交联网络结构作为橡胶材料最为重要的特征而受到广泛研究. 自20世纪中叶以来,以Flory为代表的学者构建了一系列的天然橡胶弹性统计学模型[
先前的研究中,我们在传统橡胶弹性模型的基础上同时考虑了聚异戊二烯和聚硫的熵弹性和焓弹性,并由此提出了一个改进的模型,即双组分量子力学高斯(TCQMG)模型[
本研究选取了产量最大、最具代表性的甲基乙烯基硅橡胶作为研究对象[
选取聚二甲基硅氧烷(PDMS)和聚甲基丙烯酸甲酯(PMMA)为模型体系来研究硅氧烷链和碳-碳链的单链弹性. 近30年来,基于原子力显微镜(AFM)的单分子力谱已经发展成为表征分子链弹性的一种成熟的实验手段[
PDMS样品(Mn = 1.1×105 Da,产品编号:482005)和PMMA样品(Mw = 2.98×105 Da, PDI: 1.02)分别购自Sigma-Aldrich和上海甄准生物科技有限公司. 取适量PDMS样品溶于二氯甲烷中配制10 mg/L的稀溶液. PMMA溶于四氢呋喃配制浓度为2 mg/L的稀溶液. 将石英片在热的过硫酸铵/过氧化氢溶液(0.75 g/mL,100 ℃)中浸泡5 h,随即用大量的超纯水冲洗. 在氨基化处理之前,将石英片置于烘箱中干燥. 随后,将石英片浸没在γ-氨丙基三乙氧基硅烷/二氯甲烷溶液(3 mg/L)中避光反应30 min. 之后将石英片分别在二氯甲烷、无水乙醇、超纯水中超声清洗3 min. 将约50 μL配制的高分子溶液滴加在氨基化石英片上,并静置约20 min. 用对应高分子的溶剂冲洗以除去石英片上吸附不牢的高分子,吹干备用.
所有的单链拉伸实验都是在商用化AFM (MFP-3D, Asylum Research, CA)上完成的. 实验中使用的氮化硅(Si3N4)探针购于Bruker Corp., CA. 通过热振动法测得探针悬臂的弹性系数的范围在30~50 pN/nm[
为了模拟宏观硅橡胶中分子链所处的准无扰环境(链间范德华作用可忽略),选择非极性有机溶剂(可近似为真空理想条件)作为力谱实验的环境[
Fig. 1 The force-extension curves of PDMS obtained in nonane before (a) and after (b) normalization. Inset: the primary structure of PDMS.
自由连接链(FJC)模型及其改进的模型常用于描述高分子的单链弹性[
R = L0⋅[coth (F⋅lkkB⋅T)-kB⋅TF⋅lk] | (1) |
其中L0为分子链的轮廓长度,lk为分子链的库恩长度,kB为波尔兹曼常数,T为开氏温度. 原始的FJC模型考虑了分子链的熵弹性,却无法很好地描述焓弹性[
F=∑3n=1γn(L[F]L0-1)n | (2) |
γ1 = 13.1 nN,γ2 = 41.5 nN,γ3 = -114.6 nN,其中L[F]是分子链在受力下的长度,γ1是线性模量,γ2和γ3是非线性模量.
RL0=L[F]L0⋅[coth (F⋅lkkB⋅T)-kB⋅TF⋅lk] | (3) |
其中R/L0是分子链归一化后的伸长量.
对于任意合理范围内的L[F]/L0值,都可以通过
Fig. 2 (a) QM-FJC theoretical curves with different lk. The normalized experimental curve of PDMS is shown as a reference. (b) QM-FJC theoretical curve with lk = 0.328 nm and the experimental curve of PDMS.
为了得到碳-碳主链在准无扰环境中的基准弹性,同样选择了非极性有机溶剂作为PMMA的实验环境.
Fig. 3 The force-extension curves of PMMA obtained in nonane before (a) and after (b) normalization. Inset: the primary structure of PMMA. (c) QM-FJC theoretical curve with lk = 0.308 nm and the experimental curve of PMMA.
至此,我们通过单分子力谱实验得到了PDMS和PMMA主链在准无扰环境中的基准弹性. 接下来尝试将2种分子链的基准弹性(包含熵弹性和焓弹性)整合到传统的统计学模型中,并用新模型来描述硅橡胶的宏观力学性能,从而建立硅橡胶交联网络中单链弹性和宏观力学性能之间的关联.
硅橡胶由庞大的交联网络组成.
λchain=rr0=√33√λx2+λy2+λz2 | (4) |
其中,λx、λy和λz分别为宏观橡胶在x、y和z方向上的主拉伸,r0和r分别为网络链在拉伸前后的末端距.
Fig. 4 (a) The ideal cross-linked network structure in the TCQMG model. Blue lines represent siloxane chains. Orange lines represent carbon-carbon chains. Black dots represent cross-link points. The chains between two adjacent cross-link points are the network chains in the TCQMG model. (b) The network chain in the TCQMG model. Red dots represent the connection points in a network chain.
在TCQMG模型中,每条网络链都由2条主成分链和1条交联链组成[
rSi=K1r ; K1=NSilSiqNClC+2NSilSi | (5) |
rC=K2r ; K2=qNClCqNClC+2NSilSi | (6) |
其中NSi和NC分别为网络链中硅氧烷链和碳-碳链的库恩链段数目,lSi和lC分别为硅氧烷链和碳-碳链的库恩链段长度,NSilSi和NClC分别为硅氧烷链和碳-碳链的初始轮廓长度. K1和K2是2个系数,分别表示硅氧烷链和碳-碳链所占网络链总长(r)的比例. 这里,2K1 + K2 = 1.
硅橡胶在拉伸时的能量变化等于其中所有网络链能量变化的总和. 单根网络链在拉伸时的能量变化则可通过单分子力谱结果(即分子链的力-拉伸关系)求得. 这样,硅氧烷链和碳-碳链的单链弹性就被整合进了传统模型中,得到的新模型即为TCQMG模型(详细推导过程请参见电子支持信息). TCQMG模型公式描述的是硅橡胶的应力-拉伸关系:
σ=√3nr03[2K1FSi+K2FC]λx2-λz2√λx2+λy2+λz2 | (7) |
其中σ为硅橡胶的拉伸应力,FSi和FC分别表示硅氧烷链和碳-碳链的力-拉伸关系,n为网络链密度.
由于QM-FJC理论曲线本身就是归一化的曲线,因而碳-碳链和硅氧烷链的eC和eSi分别对应2种分子QM-FJC理论曲线的横坐标. 根据PMMA和PDMS的QM-FJC理论曲线,可获得合理范围内任意力值(F)下的eC和eSi的值,分别表达为eC(F)和eSi(F),两者的比值即为函数q(F),如电子支持信息图S3(a)所示. 将函数eC(F)和eSi(F)整合进
Fig. 5 The relationship between q and λchain.
我们注意到,橡胶的实验数据通常为工程应力(σe)与拉伸(λ)之间的关系. 因此在拟合之前,应将
本文中选取了3种不同的高温硫化硅橡胶(样品1:牌号MVQ 110-2,硅橡胶分子量6.2×105 Da,硫化剂2,5-双(叔丁基过氧)-2,5-二甲基己烷[
Fig. 6 The black square points are the experimental data from Yang et al.[
Sample | n (mol/cm3) | NSi | NC | Residual sum of squares |
---|---|---|---|---|
1 | 9.47×10-5 | 14.9 | 1.5 | 0.12 |
2 | 5.07×10-5 | 75.1 | 1.5 | 0.07 |
3 | 3.14×10-5 | 51.2 | 1.5 | 0.03 |
复杂的交联网络可通过网络链密度(n)、主成分链长度(NSilSi)、交联链长度(NClC)等参数来描述. 这些交联网络参数极大影响着硅橡胶的力学性能,因此分析这些参数的影响将有助于实现硅橡胶的理性设计. 首先,本研究通过TCQMG模型分析了网络链密度对硅橡胶力学性能的影响. 以样品3为例,其NSi和NC分别设定为51.2和1.5,而n从3.14×10-5 mol/cm3逐渐增大到8.12×10-5 mol/cm3,步长为1.66×10-5 mol/cm3. 每一个确定的n都能得到一条确定的应力-拉伸模拟曲线,如
Fig. 7 (a) The stress-stretch curves of silicone rubber with various n simulated by the TCQMG model. (b) The plot of σe versus n. The black triangle points are data extracted from (a) at λ = 4. The red solid line is the fitting curve. Equation: σe = 0.16n.
TCQMG模型中,每条网络链包含2条硅氧烷链和1条碳-碳链段,其中硅氧烷链初始长度为NSilSi,碳-碳链段初始长度为NClC. 在TCQMG模型模拟过程中,首先改变了主成分链的长度,将样品3的NSi从51.2增加到81.2,步长为10. 设定n和NC不变,即分别为3.14×10-5 mol/cm3和1.5. 模拟结果如
Fig. 8 The stress-stretch curves of silicone rubber with various NSi (a) and NC (b) simulated by the TCQMG model, respectively.
随后,改变交联链的长度,将样品3的NC从1.5增加到13.5,步长为4. 设定n和NSi不变,即分别为3.14×10-5 mol/cm3和51.2. 如
TCQMG模型的模拟结果表明,交联密度和交联链长度能够影响硅橡胶的定伸模量,其中交联密度的影响尤为明显. 此外,主成分链长度对硅橡胶的延展性影响较大. 这些模拟结果有助于实现硅橡胶的理性设计. 例如:增加交联密度(提升乙烯基含量或提高乙烯基的反应率)可大幅度提高橡胶的硬度,但这也会缩短硅橡胶中主成分链的长度,从而导致硅橡胶的延展性变差. 增加主成分链长度可提升硅橡胶的延展性,同时也会导致硅橡胶交联密度的降低(即硬度降低). 增加交联链长度(如将乙烯基替换为末端带乙烯基的较长侧链)可在尽量不损失硅橡胶延展性的前提下,在一定程度上增加硅橡胶的硬度. 此外,改善硅橡胶中交联网络的均匀性也将有助于硅橡胶力学性能的提升.
本文中,我们对硅橡胶的宏观力学性能与单分子水平的微观力学性质之间的关联进行了探究. 首先通过单分子力谱实验得到了PDMS和PMMA在壬烷中的单链弹性. 并通过QM理论计算验证了实验结果,表明得到了2种分子在准无扰环境中的主链基准弹性. 随后,使用整合了2种分子链真实弹性的TCQMG模型来描述硅橡胶的宏观力学性能. 拟合结果表明TCQMG模型适用于描述不同硅橡胶的应力-拉伸行为. 此外,利用TCQMG模型模拟了网络链密度、主成分链长度和交联链长度等因素对硅橡胶力学性能的影响. 可以预见,TCQMG模型的模拟结果有助于理解硅橡胶的复杂交联网络结构,且有利于实现硅橡胶的理性设计.
Shit S. C.; Shah, P. A review on silicone rubber. Natl. Acad. Sci. Lett., 2013, 36, 355-365. doi:10.1007/s40009-013-0150-2 [Baidu Scholar]
Hron P. Hydrophilisation of silicone rubber for medical applications. Polym. Int., 2003, 52, 1531-1539. doi:10.1002/pi.1273 [Baidu Scholar]
Mu Q.; Feng S.; Diao G. Thermal conductivity of silicone rubber filled with ZnO. Polym. Compos., 2007, 28, 125-130. doi:10.1002/pc.20276 [Baidu Scholar]
Zhang C.; Wang J.; Song S. Preparation of a novel type of flame retardant diatomite and its application in silicone rubber composites. Adv. Powder Technol., 2019, 30, 1567-1575. doi:10.1016/j.apt.2019.05.002 [Baidu Scholar]
Flory P. J.; Erman B. Theory of elasticity of polymer networks. 3. Macromolecules, 1982, 15, 800-806. doi:10.1021/ma00231a022 [Baidu Scholar]
Flory P. J.; Rehner Jr J. Statistical mechanics of cross-linked polymer networks I. rubberlike elasticity. J. Chem. Phys., 1943, 11, 512-520. doi:10.1063/1.1723791 [Baidu Scholar]
Wang M. C.; Guth E. Statistical theory of networks of non-Gaussian flexible chains. J. Chem. Phys., 1952, 20, 1144-1157. doi:10.1063/1.1700682 [Baidu Scholar]
Arruda E. M.; Boyce M. C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids, 1993, 41, 389-412. doi:10.1016/0022-5096(93)90013-6 [Baidu Scholar]
Fang H.; Li J.; Chen H.; Liu B.; Huang W.; Liu Y.; Wang T. Radiation induced degradation of silica reinforced silicone foam: experiments and modeling. Mech. Mater., 2017, 105, 148-156. doi:10.1016/j.mechmat.2016.11.006 [Baidu Scholar]
Wu P.; Van Der Giessen E. On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. J. Mech. Phys. Solids, 1993, 41, 427-456. doi:10.1016/0022-5096(93)90043-f [Baidu Scholar]
Luo Z.; Zhang A.; Chen Y.; Shen Z.; Cui S. How big is big enough? Effect of length and shape of side chains on the single-chain enthalpic elasticity of a macromolecule. Macromolecules, 2016, 49, 3559-3565. doi:10.1021/acs.macromol.6b00247 [Baidu Scholar]
Zhang F.; Gong Z.; Cai W.; Qian H.; Lu Z.; Cui S. Single-chain mechanics of cis-1,4-polyisoprene and polysulfide. Polymer, 2022, 240, 124473. doi:10.1016/j.polymer.2021.124473 [Baidu Scholar]
Zhang F.; Cui S. A two-component statistical model for natural rubber. Polymer, 2022, 242, 124462. doi:10.1016/j.polymer.2021.124462 [Baidu Scholar]
张希. 橡胶弹性模型的新进展. 高分子学报, 2022, 53, 441-444. doi:10.11777/j.issn1000-3304.2022.22RH2 [Baidu Scholar]
Chai H.; Tang X.; Ni M.; Chen F.; Zhang Y.; Chen D.; Qiu Y. Preparation and properties of flexible flame-retardant neutron shielding material based on methyl vinyl silicone rubber. J. Nucl. Mater., 2015, 464, 210-215. doi:10.1016/j.jnucmat.2015.04.048 [Baidu Scholar]
Yu T.; Shan Y.; Li Z.; Wang X.; Cui H.; Yang K.; Cui Y. Application of a super-stretched self-healing elastomer based on methyl vinyl silicone rubber for wearable electronic sensors. Polym. Chem., 2021, 12, 6145-6153. doi:10.1039/d1py01089a [Baidu Scholar]
Lopez L.; Cosgrove A.; Hernandez-Ortiz J.; Osswald T. Modeling the vulcanization reaction of silicone rubber. Polym. Eng. Sci., 2007, 47, 675-683. doi:10.1002/pen.20698 [Baidu Scholar]
Kruželák J.; Sýkora R.; Hudec I. Vulcanization of rubber compounds with peroxide curing systems. Rubber Chem. Technol., 2017, 90, 60-88. doi:10.5254/rct.16.83758 [Baidu Scholar]
Lu S.; Cai W.; Cao N.; Qian H.; Lu Z.; Cui S. Understanding the extraordinary flexibility of polydimethylsiloxane through single-molecule mechanics. ACS Mater. Lett., 2022, 4, 329-335. doi:10.1021/acsmaterialslett.1c00655 [Baidu Scholar]
Zhang S.; Qian H.; Liu Z.; Ju H.; Lu Z.; Zhang H.; Chi L.; Cui S. Towards unveiling the exact molecular structure of amorphous red phosphorus by single-molecule studies. Angew. Chem. Int. Ed., 2019, 58, 1659-1663. doi:10.1002/anie.201811152 [Baidu Scholar]
Kolberg A.; Wenzel C.; Hackenstrass K.; Schwarzl R.; Rüttiger C.; Hugel T.; Gallei M.; Netz R. R.; Balzer B. N. Opposing temperature dependence of the stretching response of single PEG and PNiPAM polymers. J. Am. Chem. Soc., 2019, 141, 11603-11613. doi:10.1021/jacs.9b04383 [Baidu Scholar]
张薇, 侯矍, 李楠, 张文科. 基于原子力显微镜的单分子力谱技术在高分子表征中的应用. 高分子学报, 2021, 52, 1523-1546. doi:10.11777/j.issn1000-3304.2020.20266 [Baidu Scholar]
Fu L.; Wang H.; Li H. Harvesting mechanical work from folding-based protein engines: from single-molecule mechanochemical cycles to macroscopic devices. CCS Chem., 2019, 1, 138-147. doi:10.31635/ccschem.019.20180012 [Baidu Scholar]
Deng Y.; Wu T.; Wang M.; Shi S.; Yuan G.; Li X.; Chong H.; Wu B.; Zheng P. Enzymatic biosynthesis and immobilization of polyprotein verified at the single-molecule level. Nat. Commun., 2019, 10, 2775. doi:10.1038/s41467-019-10696-x [Baidu Scholar]
Cai W.; Xu D.; Qian L.; Wei J.; Xiao C.; Qian L.; Lu Z.; Cui S. Force-induced transition of π-π stacking in a single polystyrene chain. J. Am. Chem. Soc., 2019, 141, 9500-9503. doi:10.1021/jacs.9b03490 [Baidu Scholar]
Huang W.; Wu X.; Gao X.; Yu Y.; Lei H.; Zhu Z.; Shi Y.; Chen Y.; Qin M.; Wang W.; Cao Y. Maleimide-thiol adducts stabilized through stretching. Nat. Chem., 2019, 11, 310-319. doi:10.1038/s41557-018-0209-2 [Baidu Scholar]
Zhao P.; Xu C.; Sun C.; Xia J.; Sun L.; Li J.; Xu H. Exploring the difference of bonding strength between silver (I) and chalcogenides in block copolymer systems. Polym. Chem., 2020, 11, 7087-7093. doi:10.1039/d0py01201g [Baidu Scholar]
Xing H.; Li Z.; Wang W.; Liu P.; Liu J.; Song Y.; Wu Z. L.; Zhang W.; Huang F. Mechanochemistry of an interlocked poly[2]catenane: from single molecule to bulk gel. CCS Chem., 2020, 2, 513-523. doi:10.31635/ccschem.019.20190043 [Baidu Scholar]
Tian Y.; Cao X.; Li X.; Zhang H.; Sun C.; Xu Y.; Weng W.; Zhang W.; Boulatov R. A polymer with mechanochemically active hidden length. J. Am. Chem. Soc., 2020, 142, 18687-18697. doi:10.1021/jacs.0c09220 [Baidu Scholar]
夏嘉豪, 李宏斌, 许华平. 含硫/硒动态共价键强弱的测定. 高分子学报, 2020, 51, 205-213. doi:10.11777/j.issn1000-3304.2020.20134 [Baidu Scholar]
Hutter J. L.; Bechhoefer J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum., 1993, 64, 1868-1873. doi:10.1063/1.1144449 [Baidu Scholar]
Hinterdorfer P.; Dufrêne Y. F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods, 2006, 3, 347-355. doi:10.1038/nmeth871 [Baidu Scholar]
Wang K.; Pang X.; Cui S. Inherent stretching elasticity of a single polymer chain with a carbon-carbon backbone. Langmuir, 2013, 29, 4315-4319. doi:10.1021/la400626x [Baidu Scholar]
Cui S.; Albrecht C.; Kühner F.; Gaub H. E. Weakly bound water molecules shorten single-stranded DNA. J. Am. Chem. Soc., 2006, 128, 6636-6639. doi:10.1021/ja0582298 [Baidu Scholar]
Bao Y.; Luo Z.; Cui S. Environment-dependent single-chain mechanics of synthetic polymers and biomacromolecules by atomic force microscopy-based single-molecule force spectroscopy and the implications for advanced polymer materials. Chem. Soc. Rev., 2020, 49, 2799-2827. doi:10.1039/c9cs00855a [Baidu Scholar]
Zhang W.; Zhang X. Single molecule mechanochemistry of macromolecules. Prog. Polym. Sci., 2003, 28, 1271-1295. doi:10.1016/s0079-6700(03)00046-7 [Baidu Scholar]
许俊, 曹楠普, 肖尧鑫, 罗仲龙, 鲍雨, 崔树勋. 聚乙二醇生物相容性与结合水关系的单分子力谱研究. 高分子学报, 2020, 51, 754-761. doi:10.11777/j.issn1000-3304.2019.19219 [Baidu Scholar]
Bao Y.; Qian H.; Lu Z.; Cui S. The unexpected flexibility of natural cellulose at a single-chain level and its implications to the design of nano materials. Nanoscale, 2014, 6, 13421-13424. doi:10.1039/c4nr04862h [Baidu Scholar]
Cai W.; Lu S.; Wei J.; Cui S. Single-chain polymer models incorporating the effects of side groups: An approach to general polymer models. Macromolecules, 2019, 52, 7324-7330. doi:10.1021/acs.macromol.9b01542 [Baidu Scholar]
Hugel T.; Rief M.; Seitz M.; Gaub H. E.; Netz R. R. Highly stretched single polymers: Atomic-force-microscope experiments versus ab-initio theory. Phys. Rev. Lett., 2005, 94, 048301. doi:10.1103/physrevlett.94.048301 [Baidu Scholar]
Cui S.; Yu Y.; Lin Z. Modeling single chain elasticity of single-stranded DNA: a comparison of three models. Polymer, 2009, 50, 930-935. doi:10.1016/j.polymer.2008.12.012 [Baidu Scholar]
Flory P. J.; Crescenzi V.; Mark J. E. Configuration of the poly-(dimethylsiloxane) chain. iii. correlation of theory and experiment. J. Am. Chem. Soc., 1964, 86, 146-152. doi:10.1021/ja01056a007 [Baidu Scholar]
Beatty M. F. An average-stretch full-network model for rubber elasticity. J. Elasticity, 2003, 70, 65-86. doi:10.1023/b:elas.0000005553.38563.91 [Baidu Scholar]
Yang H.; Yao X.; Zheng Z.; Gong L.; Yuan L.; Yuan Y.; Liu Y. Highly sensitive and stretchable graphene-silicone rubber composites for strain sensing. Compos. Sci. Technol., 2018, 167, 371-378. doi:10.1016/j.compscitech.2018.08.022 [Baidu Scholar]
Aksüt D.; Demeter M.; Vancea C.; Şen M. Effect of radiation on vinyl-methyl-polysiloxane and phenyl-vinyl-methyl-polysiloxane elastomers cured with different co-agents: Comparative study of mechanical and relaxation properties. Radiat. Phys. Chem., 2019, 158, 87-93. doi:10.1016/j.radphyschem.2019.01.024 [Baidu Scholar]
Ziraki S.; Zebarjad S. M.; Hadianfard M. J. A study on the tensile properties of silicone rubber/polypropylene fibers/silica hybrid nanocomposites. J. Mech. Behav. Biomed. Mater., 2016, 57, 289-296. doi:10.1016/j.jmbbm.2016.01.019 [Baidu Scholar]
Zhao F.; Bi W.; Zhao S. Influence of crosslink density on mechanical properties of natural rubber vulcanizates. J. Macromol. Sci., Part B: Phys., 2011, 50, 1460-1469. doi:10.1080/00222348.2010.507453 [Baidu Scholar]
Mark J. E. Improved elastomers through control of network chain-length distributions. Rubber Chem. Technol., 1999, 72, 465-483. doi:10.5254/1.3538814 [Baidu Scholar]
Mark J. E.; Tang M. Y. Dependence of the elastomeric properties of bimodal networks on the lengths and amounts of the short chains. J. Polym. Sci., Polym. Phys. Ed., 1984, 22, 1849-1855. doi:10.1002/pol.1984.180221101 [Baidu Scholar]
486
Views
797
Downloads
0
CSCD
Related Articles
Related Author
Related Institution