浏览全部资源
扫码关注微信
1.四川大学高分子科学与工程学院 高分子材料工程国家重点实验室 成都 610065
2.Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada M5S 3G8
Peng-jian Gong, E-mail: pgong@scu.edu.cn;
Guang-xian Li, E-mail: guangxianli@scu.edu.cn
Published:20 January 2023,
Published Online:06 October 2022,
Received:18 May 2022,
Accepted:29 July 2022
扫 描 看 全 文
刘云杰,金碧辉,马昊宇等.乙烯-乙烯醇共聚物/碳纳米管复合发泡材料的电磁屏蔽性能研究[J].高分子学报,2023,54(01):106-120.
Liu Yun-jie,Jin Bi-hui,Ma Hao-yu,et al.Electromagnetic Shielding Properties of Ethylene-vinyl Alcohol Copolymer/Carbon Nanotube Nanocomposite Foams[J].ACTA POLYMERICA SINICA,2023,54(01):106-120.
刘云杰,金碧辉,马昊宇等.乙烯-乙烯醇共聚物/碳纳米管复合发泡材料的电磁屏蔽性能研究[J].高分子学报,2023,54(01):106-120. DOI: 10.11777/j.issn1000-3304.2022.22188.
Liu Yun-jie,Jin Bi-hui,Ma Hao-yu,et al.Electromagnetic Shielding Properties of Ethylene-vinyl Alcohol Copolymer/Carbon Nanotube Nanocomposite Foams[J].ACTA POLYMERICA SINICA,2023,54(01):106-120. DOI: 10.11777/j.issn1000-3304.2022.22188.
选用高机械强度和耐气候性乙烯-乙烯醇共聚物(EVOH)作为基体,添加高效导电填料多壁碳纳米管(MWCNTs),同时为了进一步提高材料性能,添加了聚醚多元醇(EOPO)与4
4'-二苯基甲烷二异氰酸(MDI)的共聚物. 采用绿色环保的超临界二氧化碳发泡法制备EVOH/MDI-
g
-EOPO/MWCNTs纳米复合发泡材料,结果表明在EVOH/MDI-
g
-EOPO/MWCNTs复合材料中引入多孔结构,利用多层界面反射-吸收电磁波,比电磁屏蔽性能提升270%. 通过调控MWCNTs体积含量与泡孔结构,当MWCNTs体积含量达到2.7 wt%时,EVOH/MDI-
g
-EOPO/MWCNTs复合发泡材料在
X
波段(9~12 GHz)表现出优异的比电磁屏蔽效能(41.76 dB·cm
3
/g).
With the rapid development of global science and technology
electromagnetic radiation pollution is becoming more and more serious
and there is an urgent need for electromagnetic shielding materials
which require higher performance: light weight
high mechanical strength
high conductivity
and good electromagnetic interference shielding effect. In order to meet the requirements
ethylene-vinyl alcohol copolymer (EVOH) with high mechanical strength and good weather resistance was selected as the matrix
and multi-walled carbon nanotubes (MWCNTs) with high-efficiency conductive filler were added. Meanwhile
in order to further improve the material properties
a copolymer of polyether polyol (EOPO) and 4
4'-diphenylmethane diisocyanate (MDI) was added. In this paper
EVOH/MDI-
g
-EOPO/MWCNTs nano-composite foams were prepared by supercritical carbon dioxide foaming method
which is environmentally friendly. The results show that the introduction of a porous structure into EVOH/MDI-
g
-EOPO/MWCNTs composites
and the use of multilayer interfaces to reflect and absorb electromagnetic waves
can improve the electromagnetic shielding performance by 270%. By adjusting the MWCNTs content and cell structure
when the MWCNTs volume content reaches 2.7 vol%
the EVOH/MDI-
g
-EOPO/MWCNTs composite foam material exhibits an excellent specific electromagnetic shielding efficiency (41.76 dB·cm
3
/g) in the X-band (9-12 GHz).
电磁屏蔽乙烯-乙烯醇共聚物超临界二氧化碳发泡多壁碳纳米管多孔纳米复合材料
Electromagnetic shieldingEthylene-vinyl alcohol copolymersSupercritical carbon dioxide foamingMulti-walled carbon nanotubesPorous nanocomposites
Townsend L. W.; Nealy J. E.; Wilson J. W.; Atwell W. Large solar flare radiation shielding requirements for manned interplanetary missions. J. Spacecr. Rockets, 1989, 26, 126-128. doi:10.2514/3.26043http://dx.doi.org/10.2514/3.26043
Abbasi H.; Antunes M.; Velasco J. I. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci., 2019, 103, 319-373. doi:10.1016/j.pmatsci.2019.02.003http://dx.doi.org/10.1016/j.pmatsci.2019.02.003
Iqbal, A.; Sambyal, P.; Koo, C. M. 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater., 2020, 30, 2000883. doi:10.1002/adfm.202000883http://dx.doi.org/10.1002/adfm.202000883
Thomassin J. M.; Jerome C.; Pardoen T.; Bailly C.; Huynen I.; Detrembleur C. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R Rep., 2013, 74, 211-232. doi:10.1016/j.mser.2013.06.001http://dx.doi.org/10.1016/j.mser.2013.06.001
Sun Z.; Chen J.; Jia X.; Wang G.; Shen B.; Zheng W. Humidification of high-performance and multifunctional polyimide/carbon nanotube composite foams for enhanced electromagnetic shielding. Mater. Today Phys., 2021, 21, 100521. doi:10.1016/j.mtphys.2021.100521http://dx.doi.org/10.1016/j.mtphys.2021.100521
Zachariah S. M.; Grohens Y.; Kalarikkal N.; Thomas S. Hybrid materials for electromagnetic shielding: a review. Polym. Compos., 2022, 43, 2507-2544. doi:10.1002/pc.26595http://dx.doi.org/10.1002/pc.26595
高晗, 张扬. 聚(3,4-乙烯二氧噻吩)在电磁屏蔽领域的应用. 高分子学报, 2020, 51, 996-1009. doi:10.11777/j.issn1000-3304.2020.20071http://dx.doi.org/10.11777/j.issn1000-3304.2020.20071
Boyle J. Wireless technologies and patient safety in hospitals. Telemed. J. e-Health, 2006, 12, 373-382. doi:10.1089/tmj.2006.12.373http://dx.doi.org/10.1089/tmj.2006.12.373
Hirako K.; Shirasaka S.; Obata T.; Nakasuka S.; Saito H.; Nakamura S.; Tohara T. Development of small satellite for x-band compact synthetic aperture radar. J. Phys.: Conf. Ser, 2018, 1130, 012013. doi:10.1088/1742-6596/1130/1/012013http://dx.doi.org/10.1088/1742-6596/1130/1/012013
Kim W. M.; Ku D. Y.; Lee I. K.; Seo Y. W.; Cheong B. K.; Lee T. S.; Kim I. H.; Lee K. S. The electromagnetic interference shielding effect of indium-zinc oxide/silver alloy multilayered thin films. Thin Solid Films, 2005, 473, 315-320. doi:10.1016/j.tsf.2004.08.083http://dx.doi.org/10.1016/j.tsf.2004.08.083
Simkin V.; Chernousova N.; Yakimova N. Metrological assurance of measurements of the electromagnetic parameters of ferromagnetic film materials at high frequencies. Meas. Tech., 2002, 45, 1271-1273. doi:10.1023/a:1022989308254http://dx.doi.org/10.1023/a:1022989308254
Ma H.; Qin C.; Jin B.; Gong P.; Lan B.; Huang Y.; Park C. B.; Li G. Using a supercritical fluid-assisted thin cell wall stretching-defoaming method to enhance the nanofiller dispersion, EMI shielding, and thermal conduction property of CNF/PVDF nanocomposites. Ind. Eng. Chem. Res., 2022, 61, 3647-3659. doi:10.1021/acs.iecr.1c05052http://dx.doi.org/10.1021/acs.iecr.1c05052
Jia X.; Shen B.; Zhang L.; Zheng W. Construction of compressible polymer/mxene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon, 2021, 173, 932-940. doi:10.1016/j.carbon.2020.11.036http://dx.doi.org/10.1016/j.carbon.2020.11.036
吴昕昱, 张好斌. 聚合物基纳米复合材料结构设计与电磁屏蔽性能研究. 高分子学报, 2020, 51, 573-585. doi:10.11777/j.issn1000-3304.2020.20015http://dx.doi.org/10.11777/j.issn1000-3304.2020.20015
李昕, 许英涛, 郑一平, 张焱, 李从举, 陈光明. 原位聚合制备PEDOT-PSS/PVA电磁波吸收功能复合导电织物. 高分子学报, 2017, 661-668. doi:10.11777/j.issn1000-3304.2017.16158http://dx.doi.org/10.11777/j.issn1000-3304.2017.16158
Singh A. K.; Shishkin A.; Koppel T.; Gupta N. A review of porous lightweight composite materials for electromagnetic interference shielding. Compos. Part B Eng., 2018, 149, 188-197. doi:10.1016/j.compositesb.2018.05.027http://dx.doi.org/10.1016/j.compositesb.2018.05.027
Geetha S.; Satheesh Kumar K.; Rao C. R.; Vijayan M.; Trivedi D. EMI shielding: methods and materials—a review. J. Appl. Polym. Sci., 2009, 112, 2073-2086. doi:10.1002/app.29812http://dx.doi.org/10.1002/app.29812
Yao Y.; Jin S.; Zou H.; Li L.; Ma X.; Lv G.; Gao F.; Lv X.; Shu Q. Polymer-based lightweight materials for electromagnetic interference shielding: a review. J. Mater. Sci., 2021, 56, 6549-6580. doi:10.1007/s10853-020-05635-xhttp://dx.doi.org/10.1007/s10853-020-05635-x
Kuang T.; Chang L.; Chen F.; Sheng Y.; Fu D.; Peng X. Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon, 2016, 105, 305-313. doi:10.1016/j.carbon.2016.04.052http://dx.doi.org/10.1016/j.carbon.2016.04.052
Ameli A.; Nofar M.; Wang S.; Park C. B. Lightweight polypropylene/stainless-steel fiber composite foams with low percolation for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces, 2014, 6, 11091-11100. doi:10.1021/am500445ghttp://dx.doi.org/10.1021/am500445g
Liang S.; Qin Y.; Gao W.; Wang M. A lightweight polyurethane-carbon microsphere composite foam for electromagnetic shielding. e-Polymers, 2022, 22, 223-233. doi:10.1515/epoly-2022-0023http://dx.doi.org/10.1515/epoly-2022-0023
Eswaraiah V.; Sankaranarayanan V.; Ramaprabhu S. Functionalized graphene-pvdf foam composites for emi shielding. Macromol. Mater. Eng., 2011, 296, 894-898. doi:10.1002/mame.201100035http://dx.doi.org/10.1002/mame.201100035
Xin W.; Xi G. Q.; Cao W. T.; Ma C.; Liu T.; Ma M. G.; Bian J. Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding. RSC Adv., 2019, 9, 29636-29644. doi:10.1039/c9ra06399dhttp://dx.doi.org/10.1039/c9ra06399d
Song W. L.; Fan L. Z.; Cao M. S.; Lu M. M.; Wang C. Y.; Wang J.; Chen T. T.; Li Y.; Hou Z. L.; Liu J. Facile fabrication of ultrathin graphene papers for effective electromagnetic shielding. J. Mater. Chem. C, 2014, 2, 5057-5064. doi:10.1039/c4tc00517ahttp://dx.doi.org/10.1039/c4tc00517a
Xu Y.; Li Y.; Hua W.; Zhang A.; Bao J. Light-weight silver plating foam and carbon nanotube hybridized epoxy composite foams with exceptional conductivity and electromagnetic shielding property. ACS Appl. Mater. Interfaces, 2016, 8, 24131-24142. doi:10.1021/acsami.6b08325http://dx.doi.org/10.1021/acsami.6b08325
Liang R.; Cheng W.; Xiao H.; Shi M.; Tang Z.; Wang N. A calculating method for the electromagnetic shielding effectiveness of metal fiber blended fabric. Text. Res. J., 2018, 88, 973-986. doi:10.1177/0040517517693980http://dx.doi.org/10.1177/0040517517693980
Zeng Z.; Chen M.; Pei Y.; Seyed Shahabadi S. I.; Che B.; Wang P.; Lu X. Ultralight and flexible polyurethane/silver nanowire nanocomposites with unidirectional pores for highly effective electromagnetic shielding. ACS Appl. Mater. Interfaces, 2017, 9, 32211-32219. doi:10.1021/acsami.7b07643http://dx.doi.org/10.1021/acsami.7b07643
Gedler G.; Antunes M.; Velasco J.; Ozisik R. Electromagnetic shielding effectiveness of polycarbonate/graphene nanocomposite foams processed in 2-steps with supercritical carbon dioxide. Mater. Lett., 2015, 160, 41-44. doi:10.1016/j.matlet.2015.07.070http://dx.doi.org/10.1016/j.matlet.2015.07.070
Ma H.; Gong P.; Qiao Y.; Huang Y.; Li G. Nanofiber fluorescence coating for evaluation of complex solid-/gas-multi-phase and nano-/micro- multi-scale nanocomposite foam structure. Prog. Org. Coat., 2021, 154, 106183. doi:10.1016/j.porgcoat.2021.106183http://dx.doi.org/10.1016/j.porgcoat.2021.106183
Zhang Q.; Ma H.; Gong P.; Huang Y.; Park C. B.; Li G. Fluorescence assisted visualization and destruction of particles embedded thin cell walls in polymeric foams via supercritical foaming. J. Supercrit. Fluids, 2021, 181, 105511. doi:10.1016/j.supflu.2021.105511http://dx.doi.org/10.1016/j.supflu.2021.105511
Liu Y.; Li Y.; Liu Y.; Gong P.; Niu Y.; Park C. B.; Li G. Three-dimensional polymer nanofiber structures for liquid contamination adsorption. ACS Appl. Nano Mater., 2022, 5, 5640-5651. doi:10.1021/acsanm.2c00610http://dx.doi.org/10.1021/acsanm.2c00610
Jin B.; Meng F.; Ma H.; Zhang B.; Gong P.; Park C. B.; Li G. Synergistic manipulation of zero-dimension and one-dimension hybrid nanofillers in multi-layer two-dimension thin films to construct light weight electromagnetic interference material. Polymers, 2021, 13, 3278. doi:10.3390/polym13193278http://dx.doi.org/10.3390/polym13193278
0
Views
61
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution