浏览全部资源
扫码关注微信
1.中国科学院化学研究所北京分子科学国家研究中心 中国科学院工程塑料院重点实验室 北京 100190
2.中国科学院大学 北京 100049
Chen-yang Liu, E-mail: liucy@iccas.ac.cn
Published:20 February 2023,
Published Online:26 September 2022,
Received:19 May 2022,
Accepted:22 June 2022
扫 描 看 全 文
欧华林,张宝庆,刘琛阳.梯度共聚物接枝纳米粒子的合成及其力学性能[J].高分子学报,2023,54(02):245-256.
Ou Hua-lin,Zhang Bao-qing,Liu Chen-yang.Synthesis and Mechanical Properties of Gradient Copolymer Grafted Nanoparticles[J].ACTA POLYMERICA SINICA,2023,54(02):245-256.
欧华林,张宝庆,刘琛阳.梯度共聚物接枝纳米粒子的合成及其力学性能[J].高分子学报,2023,54(02):245-256. DOI: 10.11777/j.issn1000-3304.2022.22191.
Ou Hua-lin,Zhang Bao-qing,Liu Chen-yang.Synthesis and Mechanical Properties of Gradient Copolymer Grafted Nanoparticles[J].ACTA POLYMERICA SINICA,2023,54(02):245-256. DOI: 10.11777/j.issn1000-3304.2022.22191.
通过RAFT聚合制备了3种不同序列(无规、嵌段及梯度)的丙烯酸正丁酯(BA)/甲基丙烯酸甲酯(MMA) 二元共聚物(PBA-
r
-PMMA、PBA-
b
-PMMA、PBA-
g
-PMMA),以及2种含可交联侧链的聚甲基丙烯酸酰氧基丙基三乙氧基硅烷(PTEPM)的三元共聚物PTEPM-
b
-(PBA-
g
-PMMA)和PTEPM-
b
-(PBA-
r
-PMMA),三元共聚物中PBA/PMMA分别为无规和梯度结构. 这5个共聚物中PBA/PMMA段具有相近的分子量和组分比. 三元共聚物通过共组装及交联后得到球状的共聚物接枝纳米粒子NP-(PBA-
g
-PMMA)和NP-
g
-(PBA-
r
-PMMA). DSC结果表明NP-(PBA-
g
-PMMA)和PBA-
g
-PMMA具有较宽的玻璃化转变温度区间(~130 ℃),证明成功合成了梯度共聚物和接枝梯度共聚物的纳米粒子. 通过DMA测试和变温拉伸测试发现,在升温过程中梯度结构二元共聚物及其对应的纳米复合材料力学性能呈现渐进式变化,而无规或嵌段对应物力学性能呈现突变,原因是前者具有较宽的玻璃化转变过程. 由于无机内核的作用,NP-(PBA-
g
-PMMA) 和NP-(PBA-
r
-PMMA)表现出更高的力学强度和模量,但断裂伸长率下降.
Three copolymers (random
block and gradient copolymers) (PBA-
r
-PMMA
PBA-
b
-PMMA
PBA-
g
-PMMA) with different MMA/BA sequences and two terpolymers were prepared by RAFT polymerization. Their molecular weights and molar ratios of PMMA/PBA for the terpolymers were almost the same as those of the first three copolymers. Spherical nanoparticles NP-(PBA-
g
-PMMA) and NP-(PBA-
r
-PMMA) were obtained by co-assembly and crosslinking of the two terpolymers. The glass transition behaviors for these five materials were characterized using DSC. The results showed that NP-(PBA-
g
-PMMA) and PBA-
g
-PMMA had a wide temperature ranges of glass transition (~130 ℃)
which confirmed that the nanoparticles of grafted gradient copolymer and gradient copolymer were successfully synthesized. The five materials were further characterized using the DMA analysis and the tensile testing at different temperatures. The results showed that more and more chain segments gradually changed from plastic to rubber during the heating process for NP-(PBA-
g
-PMMA) and PBA-
g
-PMMA
and their mechanical properties showed a gradual change rather than the sudden change of random or block copolymer
due to the wide
T
g
of gradient copolymers. At high temperatures
the mechanical properties of gradient copolymer were better than those of random copolymer. For NP-(PBA-
g
-PMMA) and NP-(PBA-
r
-PMMA)
they showed a similar situation due to the properties of the grafted copolymers
but their strengths and moduli were higher than those of the corresponding pure copolymers
and their elongations at break were lower
which could be ascribed to the reinforcing effect of inorganic cores.
梯度共聚物聚合物接枝纳米粒子二氧化硅玻璃化温度
Gradient copolymerPolymer grafted nanoparticlesSilicon dioxideGlass transition temperature
Li X.; Liang S.; Wang W. J.; Li B. G.; Luo Y.; Zhu S. Model-based production of polymer chains having precisely designed end-to-end gradient copolymer composition and chain topology distributions in controlled radical polymerization, a review. Macromol. React Eng., 2015, 9, 409-417. doi:10.1002/mren.201500012http://dx.doi.org/10.1002/mren.201500012
Khokhlov A. R.; Berezkin A. V.; Khalatur P. G. Computer modeling of radical copolymerization under unusual conditions. J. Polym. Sci., Part A: Polym. Chem, 2004, 42, 5339-5353. doi:10.1002/pola.20451http://dx.doi.org/10.1002/pola.20451
Lefebvre M. D.; Dettmer C. M.; McSwain R. L.; Xu C.; Davila J. R.; Composto R. J.; Nguyen S. T.; Shull K. R. Effect of sequence distribution on copolymer interfacial activity. Macromolecules, 2005, 38, 10494-10502. doi:10.1021/ma0509762http://dx.doi.org/10.1021/ma0509762
Lefebvre M. D.; Olvera de La Cruz, M.; Shull K. R. Phase segregation in gradient copolymer melts. Macromolecules, 2004, 37, 1118-1123. doi:10.1021/ma035141ahttp://dx.doi.org/10.1021/ma035141a
Wang R.; Li W.; Luo Y.; Li B. G.; Shi A. C.; Zhu S. Phase behavior of ternary homopolymer/gradient copolymer blends. Macromolecules, 2009, 42, 2275-2285. doi:10.1021/ma801398ahttp://dx.doi.org/10.1021/ma801398a
Wong C. L.; Kim J.; Torkelson J. M. Breadth of glass transition temperature in styrene/acrylic acid block, random, and gradient copolymers: Unusual sequence distribution effects. J. Polym. Sci., Part B: Polym. Phys., 2007, 45, 2842-2849. doi:10.1002/polb.21296http://dx.doi.org/10.1002/polb.21296
Mok M. M.; Ellison C. J.; Torkelson J. M. Effect of gradient sequencing on copolymer order-disorder transitions: Phase behavior of styrene/n-butyl acrylate block and gradient copolymers. Macromolecules, 2011, 44, 6220-6226. doi:10.1021/ma201080nhttp://dx.doi.org/10.1021/ma201080n
Mok M. M.; Kim J.; Wong C. L.; Marrou S. R.; Woo D. J.; Dettmer C. M.; Nguyen S. T.; Ellison C. J.; Shull K. R.; Torkelson J. M. Glass transition breadths and composition profiles of weakly, moderately, and strongly segregating gradient copolymers: Experimental results and calculations from self-consistent mean-field theory. Macromolecules, 2009, 42, 7863-7876. doi:10.1021/ma9009802http://dx.doi.org/10.1021/ma9009802
Jakubowski W.; Juhari A.; Best A.; Koynov K.; Pakula T.; Matyjaszewski K. Comparison of thermomechanical properties of statistical, gradient and block copolymers of isobornyl acrylate and n-butyl acrylate with various acrylate homopolymers. Polymer, 2008, 49, 1567-1578. doi:10.1016/j.polymer.2008.01.047http://dx.doi.org/10.1016/j.polymer.2008.01.047
Gray M. K.; Zhou H.; Nguyen S. T.; Torkelson J. M. Synthesis and glass transition behavior of high molecular weight styrene/4-acetoxystyene and styrene/4-hydroxystyrene gradient copolymers made via nitroxide-mediated controlled radical polymerization. Macromolecules, 2004, 37, 5586-5595. doi:10.1021/ma0496652http://dx.doi.org/10.1021/ma0496652
Li L.; Marrou S. R.; Torkelson J. M. Remarkable glass transition breadths up to 120k exhibited by block-gradient copolymers and by gradient copolymers plasticized by oligomer. Polymer, 2018, 151, 145-153. doi:10.1016/j.polymer.2018.07.058http://dx.doi.org/10.1016/j.polymer.2018.07.058
Jiang R.; Jin Q.; Li B.; Ding D.; Wickham R. A.; Shi A. C. Phase behavior of gradient copolymers. Macromolecules, 2008, 41, 5457-5465. doi:10.1021/ma8002517http://dx.doi.org/10.1021/ma8002517
Aksimentiev A.; Hołyst R. Phase behavior of gradient copolymers. J. Chem. Phys., 1999, 111, 2329-2339. doi:10.1063/1.479504http://dx.doi.org/10.1063/1.479504
Hashimoto T.; Tsukahara Y.; Tachi K.; Kawai H. Structure and properties of tapered block polymers. 4.“Domain-boundary mixing” and “mixing-in-domain” effects on microdomain morphology and linear dynamic mechanical response. Macromolecules, 1983, 16, 648-657. doi:10.1021/ma00238a031http://dx.doi.org/10.1021/ma00238a031
Matyjaszewski K.; Shipp D. A.; McMurtry G. P.; Gaynor S. G.; Pakula T. Simple and effective one‐pot synthesis of (meth) acrylic block copolymers through atom transfer radical polymerization. J. Polym. Sci., Part A: Polym. Chem., 2000, 38, 2023-2031. doi:10.1002/(sici)1099-0518(20000601)38:11<2023::aid-pola110>3.0.co;2-lhttp://dx.doi.org/10.1002/(sici)1099-0518(20000601)38:11<2023::aid-pola110>3.0.co;2-l
Shinoda H.; Matyjaszewski K.; Okrasa L.; Mierzwa M.; Pakula T. Structural control of poly (methyl methacrylate)-g-poly(dimethylsiloxane) copolymers using controlled radical polymerization: Effect of the molecular structure on morphology and mechanical properties. Macromolecules, 2003, 36, 4772-4778. doi:10.1021/ma034064ghttp://dx.doi.org/10.1021/ma034064g
Huy T. A.; Adhikari R.; Weidisch R.; Michler G. H.; Knoll K. Influence of interfacial structure on morphology and deformation behavior of sbs block copolymers. Polymer, 2003, 44, 1237-1245. doi:10.1016/s0032-3861(02)00630-4http://dx.doi.org/10.1016/s0032-3861(02)00630-4
Guo Y.; Gao X.; Luo Y. Mechanical properties of gradient copolymers of styrene and n-butyl acrylate. J. Polym. Sci., Part B: Polym. Phys., 2015, 53, 860-868. doi:10.1002/polb.23709http://dx.doi.org/10.1002/polb.23709
Luo Y.; Wang X.; Zhu Y.; Li B. G.; Zhu S. Polystyrene-block-poly(n-butyl acrylate)-block-polystyrene triblock copolymer thermoplastic elastomer synthesized via raft emulsion polymerization. Macromolecules, 2010, 43, 7472-7481. doi:10.1021/ma101348khttp://dx.doi.org/10.1021/ma101348k
Kim J.; Gray M. K.; Zhou H.; Nguyen S. T.; Torkelson J. M. Polymer blend compatibilization by gradient copolymer addition during melt processing: stabilization of dispersed phase to static coarsening. Macromolecules, 2005, 38, 1037-1040. doi:10.1021/ma047549thttp://dx.doi.org/10.1021/ma047549t
Mok M. M.; Kim J.; Torkelson J. M. Gradient copolymers with broad glass transition temperature regions: design of purely interphase compositions for damping applications. J. Polym. Sci., Part B: Polym. Phys., 2008, 46, 48-58. doi:10.1002/polb.21341http://dx.doi.org/10.1002/polb.21341
Luo Y.; Guo Y.; Gao X.; Li B. G.; Xie T. A general approach towards thermoplastic multishape‐memory polymers via sequence structure design. Adv. Mater., 2013, 25, 743-748. doi:10.1002/adma.201202884http://dx.doi.org/10.1002/adma.201202884
Min K.; Li M.; Matyjaszewski K. Preparation of gradient copolymers via atrp using a simultaneous reverse and normal initiation process. I. Spontaneous gradient. J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 3616-3622. doi:10.1002/pola.20809http://dx.doi.org/10.1002/pola.20809
Lefay C.; Charleux B.; Save M.; Chassenieux C.; Guerret O.; Magnet S. Amphiphilic gradient poly(styrene-co-acrylic acid) copolymer prepared via nitroxide-mediated solution polymerization. synthesis, characterization in aqueous solution and evaluation as emulsion polymerization stabilizer. Polymer, 2006, 47, 1935-1945. doi:10.1016/j.polymer.2006.01.034http://dx.doi.org/10.1016/j.polymer.2006.01.034
Ren W. M.; Gao H. J.; Yue T. J. Flexible gradient poly (ether-ester) from the copolymerization of epoxides and ε-caprolactone mediated by a hetero-bimetallic complex. Chinese J. Polym. Sci., 2021, 39, 1013-1019. doi:10.1007/s10118-021-2559-2http://dx.doi.org/10.1007/s10118-021-2559-2
Min K.; Kwon Oh J.; Matyjaszewski K. Preparation of gradient copolymers via atrp in miniemulsion. Ii. Forced gradient. J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 1413-1423. doi:10.1002/pola.21911http://dx.doi.org/10.1002/pola.21911
Karaky K.; Péré E.; Pouchan C.; Desbrières J.; Dérail C.; Billon L. Effect of the synthetic methodology on molecular architecture: From statistical to gradient copolymers. Soft Matter., 2006, 2, 770-778. doi:10.1039/b607797hhttp://dx.doi.org/10.1039/b607797h
LLee S. B.; Russell A. J.; Matyjaszewski K. Atrp synthesis of amphiphilic random, gradient, and block copolymers of 2-(dimethylamino) ethyl methacrylate and n-butyl methacrylate in aqueous media. Biomacromolecules, 2003, 4, 1386-1393. doi:10.1021/bm034126ahttp://dx.doi.org/10.1021/bm034126a
Guo Y.; Zhang J.; Xie P.; Gao X.; Luo Y. Tailor-made compositional gradient copolymer by a many-shot raft emulsion polymerization method. Polym. Chem., 2014, 5, 3363-3371. doi:10.1039/c4py00003jhttp://dx.doi.org/10.1039/c4py00003j
Gilman J. W. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl. Clay Sci., 1999, 15, 31-49. doi:10.1016/s0169-1317(99)00019-8http://dx.doi.org/10.1016/s0169-1317(99)00019-8
Winey K. I.; Kashiwagi T.; Mu M. Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers. Mrs. Bull., 2007, 32, 348-353. doi:10.1557/mrs2007.234http://dx.doi.org/10.1557/mrs2007.234
Choudalakis G.; Gotsis A. Permeability of polymer/clay nanocomposites: A review. Eur. Polym. J., 2009, 45, 967-984. doi:10.1016/j.eurpolymj.2009.01.027http://dx.doi.org/10.1016/j.eurpolymj.2009.01.027
Li C.; Benicewicz B. C. Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition- fragmentation chain transfer polymerization. Macromolecules, 2005, 38, 5929-5936. doi:10.1021/ma050216rhttp://dx.doi.org/10.1021/ma050216r
Li C.; Han J.; Ryu C. Y.; Benicewicz B. C. A versatile method to prepare raft agent anchored substrates and the preparation of pmma grafted nanoparticles. Macromolecules, 2006, 39, 3175-3183. doi:10.1021/ma051983thttp://dx.doi.org/10.1021/ma051983t
Barbey R.; Lavanant L.; Paripovic D.; Schuwer N.; Sugnaux C.; Tugulu S.; Klok H. A. Polymer brushes via surface-initiated controlled radical polymerization: Synthesis, characterization, properties, and applications. Chem. Rev., 2009, 109, 5437-5527. doi:10.1021/cr900045ahttp://dx.doi.org/10.1021/cr900045a
Jiang F.; Zhang Y.; Wang Z.; Wang W.; Xu Z.; Wang Z. Combination of magnetic and enhanced mechanical properties for copolymer-grafted magnetite composite thermoplastic elastomers. ACS Appl. Mater. Interfaces, 2015, 7, 10563-10575. doi:10.1021/acsami.5b02208http://dx.doi.org/10.1021/acsami.5b02208
Cheng C. H.; Masuda S.; Nozaki S.; Nagano C.; Hirai T.; Kojio K.; Takahara A. Fabrication and deformation of mechanochromic nanocomposite elastomers based on rubbery and glassy block copolymer-grafted silica nanoparticles. Macromolecules, 2020, 53, 4541-4551. doi:10.1021/acs.macromol.9b02031http://dx.doi.org/10.1021/acs.macromol.9b02031
Zhang J.; Wang Z.; Wang X.; Wang Z. The synthesis of bottlebrush cellulose-graft-diblock copolymer elastomers via atom transfer radical polymerization utilizing a halide exchange technique. Chem. Commun., 2019, 55, 13904-13907. doi:10.1039/c9cc06982hhttp://dx.doi.org/10.1039/c9cc06982h
Jiang F.; Zhang Y.; Wang Z.; Fang H.; Ding Y.; Xu H.; Wang Z. Synthesis and characterization of nanostructured copolymer-grafted multiwalled carbon nanotube composite thermoplastic elastomers toward unique morphology and strongly enhanced mechanical properties. Ind. Eng. Chem. Res., 2014, 53, 20154-20167. doi:10.1021/ie504005fhttp://dx.doi.org/10.1021/ie504005f
Wang Z.; Liu T.; Zhao Y.; Lee J.; Wei Q.; Yan J.; Li S.; Olszewski M.; Yin R.; Zhai, Y; Bockstaller, M R.; Matyjaszewski K. Synthesis of gradient copolymer grafted particle brushes by atrp. Macromolecules, 2019, 52, 9466-9475. doi:10.1021/acs.macromol.9b02157http://dx.doi.org/10.1021/acs.macromol.9b02157
Zhang K.; Gao L.; Chen Y. Organic-inorganic hybrid materials by self-gelation of block copolymer assembly and nanoobjects with controlled shapes thereof. Macromolecules, 2007, 40, 5916-5922. doi:10.1021/ma070780xhttp://dx.doi.org/10.1021/ma070780x
Zhang K.; Gao L.; Chen Y. Smart organic/inorganic hybrid nanoobjects with controlled shapes by self-assembly of gelable block copolymers. Macromolecules, 2008, 41, 1800-1807. doi:10.1021/ma7021698http://dx.doi.org/10.1021/ma7021698
Chen Y. Shaped hairy polymer nanoobjects. Macromolecules, 2012, 45, 2619-2631. doi:10.1021/ma201495mhttp://dx.doi.org/10.1021/ma201495m
Ruan Y.; Gao L.; Yao D.; Zhang K.; Zhang B.; Chen Y.; Liu C. Y. Polymer-grafted nanoparticles with precisely controlled structures. ACS Macro. Lett., 2015, 4, 1067-1071. doi:10.1021/acsmacrolett.5b00408http://dx.doi.org/10.1021/acsmacrolett.5b00408
Roos S. G.; Müller A. H.; Matyjaszewski K. Copolymerization of n-butyl acrylate with methyl methacrylate and pmma macromonomers: comparison of reactivity ratios in conventional and atom transfer radical copolymerization. Macromolecules, 1999, 32, 8331-8335. doi:10.1021/ma9819337http://dx.doi.org/10.1021/ma9819337
欧华林, 张宝庆, 刘琛阳. 结构可控的聚合物长短刷接枝纳米粒子. 高分子学报, 2022, 53, Doi: 10.11777/j.issn1000-3304.2022.22110http://dx.doi.org/10.11777/j.issn1000-3304.2022.22110.
Weidisch R.; Schreyeck G.; Ensslen M.; Michler G.; Stamm M.; Schubert D.; Budde H.; Höring S.; Arnold M.; Jérôme R. Deformation behavior of weakly segregated block copolymers. 2. Correlation between phase behavior and deformation mechanisms of diblock copolymers. Macromolecules, 2000, 33, 5495-5504. doi:10.1021/ma991660vhttp://dx.doi.org/10.1021/ma991660v
Adhikari R.; Michler G. H. Influence of molecular architecture on morphology and micromechanical behavior of styrene/butadiene block copolymer systems. Prog. Polym. Sci., 2004, 29, 949-986. doi:10.1016/j.progpolymsci.2004.06.002http://dx.doi.org/10.1016/j.progpolymsci.2004.06.002
0
Views
77
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution