浏览全部资源
扫码关注微信
1.厦门大学化学化工学院化学系 固体表面物理化学国家重点实验室 厦门 361005
2.云南师范大学化学化工学院 昆明 650500
3.厦门理工学院材料科学与工程学院 厦门 361024
Wei-tai Wu, E-mail: wuwtxmu@xmu.edu.cn
Published:20 January 2023,
Published Online:17 September 2022,
Received:11 May 2022,
Accepted:27 June 2022
扫 描 看 全 文
邵雯,李靖宇,沈静等.含邻苯二酚基团微凝胶的合成及其硝酸根离子响应特性[J].高分子学报,2023,54(01):121-129.
Shao Wen,Li Jing-yu,Shen Jing,et al.Synthesis and Nitrate-responsiveness of Catechol-containing Microgels[J].ACTA POLYMERICA SINICA,2023,54(01):121-129.
邵雯,李靖宇,沈静等.含邻苯二酚基团微凝胶的合成及其硝酸根离子响应特性[J].高分子学报,2023,54(01):121-129. DOI: 10.11777/j.issn1000-3304.2022.22202.
Shao Wen,Li Jing-yu,Shen Jing,et al.Synthesis and Nitrate-responsiveness of Catechol-containing Microgels[J].ACTA POLYMERICA SINICA,2023,54(01):121-129. DOI: 10.11777/j.issn1000-3304.2022.22202.
刺激响应微凝胶有望用于捕获水体中硝酸根离子,并允许材料自身的再生循环使用,但如何实现高效捕获水体中硝酸根离子颇具挑战性. 本工作合成了单体2
3-二羟基-
N
-(2-甲基烯丙基)苯甲酰胺,并将其与苯乙烯、4-氯甲基苯乙烯、二乙烯基苯共聚,制得含邻苯二酚基团微凝胶. 随着硝酸根离子浓度(以氮计)在0~40.0 mg/L范围内逐渐增大,浊度法表征表明在常温22 ℃下微凝胶水溶液消光度呈现持续增大趋势,而动态光散射法表征表明微凝胶粒径减小,即发生收缩. 色谱法表征表明,微凝胶对硝酸根离子具有较好吸附性能,最大吸附容量达54.2 mg/g,即使对低浓度硝酸根离子(≤10 mg/L)也可在10 min内达到吸附平衡,有望用于废水处理.
Nitrate-responsive polymer microgels are potentially used as renewable adsorbents for nitrate removal. However
how to identify nitrate in water with high efficiency remains a challenge. In this work
we synthesized a monomer
2
3-dihydroxy-
N
-(2-methylallyl)benzamide that contained catechol groups
which was then used for the synthesis of catechol-containing microgels
via
copolymerization with styrene
1-(chloromethyl)-4-vinylbenzene and 1
4-divinylbenzene. With an increase in nitrate concentration over an environmentally relevant range of 0-40.0 mg/L (
i.e.
0-2.9 mmol/L)
turbidity tests show that the extinction of the microgel dispersion increases
and dynamic light scattering tests reveal that the hydrodynamic diameter of the microgels become smaller
indicating deswelling of the microgels
whereas the microgels would swell slightly upon adding other anions (with sulfate
chloridion
and bromide ion as models). It is possible that the deswelling behaviour of the microgels in response to nitrate is related to the presence of the catechol groups
which might bind nitrate through indirect interactions that make the microgels display salting out effect. This is further demonstrated by chromatographic tests. It is shown that the microgels can exhibit good adsorption performance for nitrate capture
with the maximum adsorption capacity being as high as 54.2 mg/g
and reach equilibrium rapidly (within 10 min) even for the low concentrations of nitrate (≤10 mg/L)
making them potential use for wastewater treatment (with tailwater from a local aquaculture as the model).
高分子微凝胶刺激响应硝酸根离子废水处理
Polymer microgelsStimuli-responsiveNitrateWastewater treatment
Tang J. X.; Huang J. M.; Tun T.; Liu S. H.; Hu J.; Zhou G. Y. Cu(II) and Cd(II) capture using novel thermosensitive hydrogel microspheres: adsorption behavior study and mechanism investigation. J. Chem. Technol. Biot., 2021, 96(8), 2382-2389.
张拥军, 关英, 罗巧芳, 刘鹏霄, 甘添天, 王东东, 邢淑滢, 廖望, 张娅彭, 程丹. PNIPAM温敏微凝胶在生物医学领域中的应用研究. 高分子通报, 2013, 26-39.
胡丹宁, 孙亚飞, 陶磊, 袁金颖, 隋晓锋, 危岩. 具有环境响应性的纤维素基水凝胶. 高分子学报, 2020, 51, 880-889. doi:10.11777/j.issn1000-3304.2020.20131http://dx.doi.org/10.11777/j.issn1000-3304.2020.20131
He Z. F.; Chen Q.; Luo Y. Y.; He Y.; Zhang Y. S.; Liu T.; Xu W. Y.; Zhang J. L.; Liu Y. X.; Xiong L. Y.; Wang S. H.; Guo Z. R. Degradable CO2-responsive microgels with wrinkled porous structure for enhanced, selective and recyclable removal of anionic dyes, Cr(VI) and As(V). Eur. Polym. J., 2021, 149, 110374. doi:10.1016/j.eurpolymj.2021.110374http://dx.doi.org/10.1016/j.eurpolymj.2021.110374
Singh V. K.; Kumar K.; Singh N.; Tiwari R.; Krishnamoorthi S. Swift catalytic reduction of hazardous pollutants by new generation microgels. Soft Matter, 2022, 18, 535-544. doi:10.1039/d1sm01559ahttp://dx.doi.org/10.1039/d1sm01559a
Naseem K.; Farooqi Z. H.; Begum R.; Ghufran M.; Rehman M. Z. U.; Najeeb J.; Irfan A.; Al-Sehemi A. G. Poly(N-isopropylmethacrylamide-acrylic acid) microgels as adsorbent for removal of toxic dyes from aqueous medium. J. Mol. Liq., 2018, 268, 229-238. doi:10.1016/j.molliq.2018.07.039http://dx.doi.org/10.1016/j.molliq.2018.07.039
Zhuang S.Y.; Cheng Y.; Zhang Q.; Tong S.; Wang M.X. Synthesis of i-Corona[6]arenes for selective anion binding: Interdependent and synergistic anion-π and hydrogen-bond interactions. Angew. Chem. Int. Ed., 2020, 59, 23716-23723. doi:10.1002/anie.202008997http://dx.doi.org/10.1002/anie.202008997
Dharmapriya T. N.; Shih H. Y.; Huang P. J. Facile synthesis of hydrogel-based ion-exchange resins for nitrite/nitrate removal and studies of adsorption behavior. Polymers, 2022, 14, 1442. doi:10.3390/polym14071442http://dx.doi.org/10.3390/polym14071442
Okunola O. A.; Santacroce P. V.; Davis J. T. Natural and synthetic receptors for nitrate anion. Supramol. Chem., 2008, 20, 169-190. doi:10.1080/10610270701747610http://dx.doi.org/10.1080/10610270701747610
Cui M.; Zeng L. H.; Qin W.; Feng J. Measures for reducing nitrate leaching in orchards: a review. Environ. Pollut., 2020, 263, 114553. doi:10.1016/j.envpol.2020.114553http://dx.doi.org/10.1016/j.envpol.2020.114553
Xu X.; Gao B. Y.; Jin B.; Yue Q. Y. Removal of anionic pollutants from liquids by biomass materials: a review. J. Mol. Liq., 2016, 215, 565-595. doi:10.1016/j.molliq.2015.12.101http://dx.doi.org/10.1016/j.molliq.2015.12.101
Roy S. Photocatalytic materials for reduction of nitroarenes and nitrates. J. Phys. Chem. C, 2020, 124, 28345-28358. doi:10.1021/acs.jpcc.0c07363http://dx.doi.org/10.1021/acs.jpcc.0c07363
Tsuchiya Y.; Yamaya Y.; Amano Y.; Machida M. Effect of two types of adsorption sites of activated carbon fibers on nitrate ion adsorption. J. Environ. Manage., 2021, 289, 112484. doi:10.1016/j.jenvman.2021.112484http://dx.doi.org/10.1016/j.jenvman.2021.112484
Karthikeyan P.; Meenakshi S. Fabrication of hybrid chitosan encapsulated magnetic-kaolin beads for adsorption of phosphate and nitrate ions from aqueous solutions. Int. J. Biol. Macromol., 2021, 168, 750-759. doi:10.1016/j.ijbiomac.2020.11.132http://dx.doi.org/10.1016/j.ijbiomac.2020.11.132
Pirsaheb M.; Khosravi T.; Sharafi K.; Mouradi M. Comparing operational cost and performance evaluation of electrodialysis and reverse osmosis systems in nitrate removal from drinking water in Golshahr, Mashhad. Desalin. Water Treat., 2016, 57, 5391-5397. doi:10.1080/19443994.2015.1004592http://dx.doi.org/10.1080/19443994.2015.1004592
Bhatnagar A.; Sillanpää M. A review of emerging adsorbents for nitrate removal from water. Chem. Eng. J., 2011, 168, 493-504. doi:10.1016/j.cej.2011.01.103http://dx.doi.org/10.1016/j.cej.2011.01.103
Ji X. F.; Wu R. T.; Long L. L.; Guo C. X.; Khashab N. M.; Huang F. H.; Sessler J. L. Physical removal of anions from aqueous media by means of a macrocycle-containing polymeric network. J. Am. Chem. Soc., 2018, 140, 2777-2780. doi:10.1021/jacs.7b13656http://dx.doi.org/10.1021/jacs.7b13656
Singh A. S.; Sun S. S. Recyclable nitrate-templated photochemical [2+2] cycloaddition reaction promoted by a tripodal receptor. Chem. Commun., 2013, 49, 10070-10072. doi:10.1039/c3cc41268ghttp://dx.doi.org/10.1039/c3cc41268g
Wang D. X.; Wang M. X. Exploring anion-π interactions and their applications in supramolecular chemistry. Acc. Chem. Res., 2020, 53, 1364-1380. doi:10.1021/acs.accounts.0c00243http://dx.doi.org/10.1021/acs.accounts.0c00243
Garner B. W.; Cai T.; Ghosh S.; Hu Z. B.; Neogi A. Refractive index change due to volume-phase transition in polyacrylamide gel nanospheres for optoelectronics and bio-photonics. Appl. Phys. Express, 2009, 2, 057001. doi:10.1143/apex.2.057001http://dx.doi.org/10.1143/apex.2.057001
Baker J. P.; Blanch H. W.; Prausnitz J. M. Swelling properties of acrylamide-based ampholytic hydrogels: comparison of experiment with theory. Polymer, 1995, 36, 1061-1069. doi:10.1016/0032-3861(95)93608-ohttp://dx.doi.org/10.1016/0032-3861(95)93608-o
Muta H.; Kawauchi S.; Satoh M. Ion-specific swelling behavior of uncharged poly(acrylic acid) gel. Colloid Polym. Sci., 2003, 282, 149-155. doi:10.1007/s00396-003-0922-1http://dx.doi.org/10.1007/s00396-003-0922-1
Zhang Y. J.; Furyk S.; Bergbreiter D. E.; Cremer P. S. Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J. Am. Chem. Soc., 2005, 127, 14505-14510. doi:10.1021/ja0546424http://dx.doi.org/10.1021/ja0546424
Solis F. J.; Vernon B. Control of gel swelling and phase separation of weakly charged thermoreversible gels by salt addition. Macromolecules, 2007, 40, 3840-3847. doi:10.1021/ma061960uhttp://dx.doi.org/10.1021/ma061960u
Quesada-Pérez M.; Maroto-Centeno J. A.; Forcadab J.; Hidalgo-Alvarez R. Gel swelling theories: the classical formalism and recent approaches. Soft Matter, 2011, 7, 10536-10547. doi:10.1039/c1sm06031ghttp://dx.doi.org/10.1039/c1sm06031g
曹春, 康宏亮, 李萍萍, 张超, 李伟伟, 黄勇, 刘瑞刚. 聚丙烯偕胺肟改性羊毛对氟离子的吸附及机理. 高分子学报, 2016, 486-493. doi:10.11777/j.issn1000-3304.2016.15246http://dx.doi.org/10.11777/j.issn1000-3304.2016.15246
Sun Y.; Zheng W. S.; Ding X. C.; Singh R. P. Selective removal of nitrate using a novel asymmetric amine based strongly basic anion exchange resin. Adsorpt. Sci. Technol., 2020, 38, 271-285. doi:10.1177/0263617420945839http://dx.doi.org/10.1177/0263617420945839
Sun Y.; Zheng W. S.; Ding X. C.; Singh R. P. Adsorption of nitrate by a novel polyacrylic anion exchange resin from water with dissolved organic matters: batch and column study. Appl. Sci., 2019, 9, 3077. doi:10.3390/app9153077http://dx.doi.org/10.3390/app9153077
Wang B. J.; Song H. O.; Wang C. M.; Shuang C. D.; Li Q.; Li A. M. Evaluation of nitrate removal properties of magnetic anion-exchange resins in water. J. Chem. Technol. Biot., 2016, 91, 1306-1313. doi:10.1002/jctb.4723http://dx.doi.org/10.1002/jctb.4723
Sowmya A.; Meenakshi S. A novel quaternized chitosan-melamine-glutaraldehyde resin for the removal of nitrate and phosphate anions. Int. J. Biol. Macromol., 2014, 64, 224-232. doi:10.1016/j.ijbiomac.2013.11.036http://dx.doi.org/10.1016/j.ijbiomac.2013.11.036
Song H. O.; Yao Z. J.; Wang M. Q.; Wang J. N.; Zhu Z. L.; Li A. M. Effect of dissolved organic matter on nitrate-nitrogen removal by anion exchange resin and kinetics studies. J. Environ. Sci., 2013, 25, 105-113. doi:10.1016/s1001-0742(12)60035-7http://dx.doi.org/10.1016/s1001-0742(12)60035-7
0
Views
47
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution