浏览全部资源
扫码关注微信
1.环渤海绿色化工应用技术协同创新中心 潍坊职业学院化学工程学院 潍坊 262737
2.橡塑材料与工程教育部重点实验室/山东省橡塑材料与工程重点实验室 青岛科技大学高分子科学与工程学院 青岛 266042
3.有机无机复合材料国家重点实验室 北京化工大学 北京 100029
Su-ting Liu, E-mail: 2017260003@sdwfvc.cn
Published:20 February 2023,
Published Online:08 October 2022,
Received:31 May 2022,
Accepted:18 July 2022
扫 描 看 全 文
刘苏亭,王秀娟,宁南英等.调控聚氨酯聚集态结构制备高性能介电弹性体[J].高分子学报,2023,54(02):266-276.
Liu Su-ting,Wang Xiu-juan,Ning Nan-ying,et al.Preparation of High Performance Dielectric Elastomers by Tailoring the Aggregation Structure of Polyurethane[J].ACTA POLYMERICA SINICA,2023,54(02):266-276.
刘苏亭,王秀娟,宁南英等.调控聚氨酯聚集态结构制备高性能介电弹性体[J].高分子学报,2023,54(02):266-276. DOI: 10.11777/j.issn1000-3304.2022.22215.
Liu Su-ting,Wang Xiu-juan,Ning Nan-ying,et al.Preparation of High Performance Dielectric Elastomers by Tailoring the Aggregation Structure of Polyurethane[J].ACTA POLYMERICA SINICA,2023,54(02):266-276. DOI: 10.11777/j.issn1000-3304.2022.22215.
通过退火保温调控聚氨酯(TPU)的相结构、结晶结构和氢键结构,进而调控其模量和介电常数(
ε'
),提高TPU的电驱动性能. 使用扫描电子显微镜(SEM)和小角X射线(SAXS)研究TPU的结晶结构,基于红外光谱对TPU的氢键变化进行半定量分析,使用原子力显微镜(AFM)研究TPU的微相分离结构. 结果显示,退火温度和时间不同导致TPU的聚集态结构各异,对模量、
ε'
和电驱动性能产生了较为复杂的影响. 低温(80 ℃)退火处理后,硬相分布于连续的软段相,且形成了较多软段结晶,相分离程度和氢键破坏程度提高. 相比于高温(150 ℃)退火处理,低温退火后获得较高
ε'
的同时保持了较低的模量,从而产生较大电致形变. 值得注意的是,低温退火条件下产生大范围的软段结晶,使得软段分子链之间排布紧密,导致TPU电击穿强度大幅度提升,得到具有高击穿强度、高电致形变的TPU介电弹性体材料. 80 ℃退火处理6 h后,TPU的电击穿强度从退火处理前的25 kV/mm提高至32 kV/mm,最大电致形变从0.77%提高至3.3%,提高4.3倍.
The phase structure
crystallization and hydrogen bonding of thermal polyurethane (TPU) were controlled by annealing process. And the modulus and dielectric constant (
ε'
) of TPU were tailored to improve the electromechanical properties of TPU. Scanning electron microscopy (SEM) and small angle X-ray (SAXS) were used to study the crystalline structure of TPU. The changes of hydrogen bonding of TPU were semi-quantitatively analyzed by infrared spectroscopy. The microphase separation structure of TPU was studied by atomic force microscope (AFM). The results show that changing annealing temperature and time results in complex aggregation structures
thus leading to very different electromechanical properties. After annealing at 80 ℃
large numbers of soft segment crystals were formed with the hard phase distributing in the continuous soft phase. Both phase separation and the destruction of hydrogen bonding were improved compared with those of 150 ℃ annealing treatment. Therefore
higher
ε'
and lower modulus were obtained
resulting in larger actuated strain. Besides
under the condition of low temperature annealing
a wide range of soft segment crystals were produced
which makes the molecular chains of soft segments closely arranged
resulting in a significant increase in the breakdown strength of TPU. The results show that after annealing at 80 ℃ for 6 h
the electrical breakdown strength of TPU increases from 25 kV/mm to 32 kV/mm
and the maximum actuated strain increases from 0.77% to 3.3%
increased by 4.3 times.
聚氨酯介电弹性体结晶相分离电致形变
PolyurethaneDielectric elastomerCrystallizationPhase separationActuated Strain
Pelrine R.; Kornbluh R.; Kofod G. High-strain actuator materials based on dielectric elastomers. Adv. Mater., 2000, 12, 1223-1225. doi:10.1002/1521-4095(200008)12:16<1223::aid-adma1223>3.0.co;2-2http://dx.doi.org/10.1002/1521-4095(200008)12:16<1223::aid-adma1223>3.0.co;2-2
Pelrine R.; Kornbluh R.; Pei Q.; Joseph J. High-speed electrically actuated elastomers with strain greater than 100%. Science, 2000, 287, 836-839. doi:10.1126/science.287.5454.836http://dx.doi.org/10.1126/science.287.5454.836
Shankar R.; Ghosh T. K.; Spontak R. J. Dielectric elastomers as next-generation polymeric actuators. Soft. Matter., 2007, 3, 1116-1129. doi:10.1039/b705737ghttp://dx.doi.org/10.1039/b705737g
Rasmussen L. Electroactivity in Polymeric Materials. Boston: Springer, 2012. doi:10.1007/978-1-4614-0878-9http://dx.doi.org/10.1007/978-1-4614-0878-9
Amjadi M.; Kyung K. U.; Park I.; Sitti M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater., 2016, 26, 1678-1698. doi:10.1002/adfm.201504755http://dx.doi.org/10.1002/adfm.201504755
Romasanta L. J.; Lopez-Manchado M. A.; Verdejo R. Increasing the performance of dielectric elastomer actuators: a review from the materials perspective. Prog. Polym. Sci., 2015, 51, 188-211. doi:10.1016/j.progpolymsci.2015.08.002http://dx.doi.org/10.1016/j.progpolymsci.2015.08.002
Biggs J.; Danielmeier K.; Hitzbleck J.; Krause J.; Kridl T.; Nowak S.; Orselli E.; Quan X. N.; Schapeler D.; Sutherland W.; Wagner J. Electroactive polymers: developments of and perspectives for dielectric elastomers. Angew. Chem. Int. Ed Engl., 2013, 52, 9409-9421. doi:10.1002/anie.201301918http://dx.doi.org/10.1002/anie.201301918
Gong M.; Zhang L. Q.; Wan P. B. Polymer nanocomposite meshes for flexible electronic devices. Prog. Polym. Sci., 2020, 107, 101279. doi:10.1016/j.progpolymsci.2020.101279http://dx.doi.org/10.1016/j.progpolymsci.2020.101279
Liu X. Y.; Sun H. B.; Liu S. T.; Jiang Y. J.; Yu B.; Ning N. Y.; Tian M.; Zhang L. Q. Mechanical, dielectric and actuated properties of carboxyl grafted silicone elastomer composites containing epoxy-functionalized TiO2 filler. Chem. Eng. J., 2020, 393, 124791. doi:10.1016/j.cej.2020.124791http://dx.doi.org/10.1016/j.cej.2020.124791
Fan B. H.; Zha J. W.; Wang D. R.; Zhao J.; Zhang Z. F.; Dang Z. M. Preparation and dielectric behaviors of thermoplastic and thermosetting polymer nanocomposite films containing BaTiO3 nanoparticles with different diameters. Compos. Sci. Technol., 2013, 80, 66-72. doi:10.1016/j.compscitech.2013.02.021http://dx.doi.org/10.1016/j.compscitech.2013.02.021
Dang Z. M.; Xia Y. J.; Zha J. W.; Yuan J. K.; Bai J. B. Preparation and dielectric properties of surface modified TiO2/silicone rubber nanocomposites. Mater. Lett., 2011, 65, 3430-3432. doi:10.1016/j.matlet.2011.07.056http://dx.doi.org/10.1016/j.matlet.2011.07.056
Liu X. Y.; Sun H. B.; Liu S. T.; Jiang Y. J.; Yin Z. M.; Yu B.; Ning N. Y.; Tian M.; Zhang L. Q. Dielectric elastomer sensor with high dielectric constant and capacitive strain sensing properties by designing polar-nonpolar fluorosilicone multiblock copolymers and introducing poly(dopamine) modified CNTs. Compos. B Eng., 2021, 223, 109103. doi:10.1016/j.compositesb.2021.109103http://dx.doi.org/10.1016/j.compositesb.2021.109103
Panahi-Sarmad M.; Zahiri B.; Noroozi M. Graphene-based composite for dielectric elastomer actuator: A comprehensive review. Sens. Actuat. A Phys., 2019, 293, 222-241. doi:10.1016/j.sna.2019.05.003http://dx.doi.org/10.1016/j.sna.2019.05.003
Zhang L.; Yuan S.; Chen S.; Wang D. R.; Han B. Z.; Dang Z. M. Preparation and dielectric properties of core-shell structured Ag@polydopamine/poly(vinylidene fluoride) composites. Compos. Sci. Technol., 2015, 110, 126-131. doi:10.1016/j.compscitech.2015.01.011http://dx.doi.org/10.1016/j.compscitech.2015.01.011
Liu S. T.; Tian M.; Yan B. Y.; Yao Y.; Zhang L. Q.; Nishi T.; Ning N. Y. High performance dielectric elastomers by partially reduced graphene oxide and disruption of hydrogen bonding of polyurethanes. Polymer, 2015, 56, 375-384. doi:10.1016/j.polymer.2014.11.012http://dx.doi.org/10.1016/j.polymer.2014.11.012
Feng P. D.; Yuan Y. H.; Zhong M.; Shao J.; Liu X. L.; Xu J.; Zhang J. H.; Li K.; Zhao W. W. Integrated resistive-capacitive strain sensors based on polymer-nanoparticle composites. ACS Appl. Nano Mater., 2020, 3, 4357-4366. doi:10.1021/acsanm.0c00487http://dx.doi.org/10.1021/acsanm.0c00487
Xiang D.; He J. J.; Cui T. T.; Liu L.; Shi Q. S.; Ma L. C.; Liang Y. R. Multiphase structure and electromechanical behaviors of aliphatic polyurethane elastomers. Macromolecules, 2018, 51, 6369-6379. doi:10.1021/acs.macromol.8b01171http://dx.doi.org/10.1021/acs.macromol.8b01171
Xiang D.; Liu L.; Liang Y. R. Effect of hard segment content on structure, dielectric and mechanical properties of hydroxyl-terminated butadiene-acrylonitrile copolymer-based polyurethane elastomers. Polymer, 2017, 132, 180-187. doi:10.1016/j.polymer.2017.11.001http://dx.doi.org/10.1016/j.polymer.2017.11.001
Zhao Y.; Zha J. W.; Yin L. J.; Li S. T.; Wen Y. Q.; Dang Z. M. Constructing advanced dielectric elastomer based on copolymer of acrylate and polyurethane with large actuation strain at low electric field. Polymer, 2018, 149, 39-44. doi:10.1016/j.polymer.2018.06.065http://dx.doi.org/10.1016/j.polymer.2018.06.065
Li C. C.; Xia H.; Yao J. M.; Ni Q. Q. Electrically induced soft actuators based on thermoplastic polyurethane and their actuation performances including tiny force measurement. Polymer, 2019, 180, 121678. doi:10.1016/j.polymer.2019.121678http://dx.doi.org/10.1016/j.polymer.2019.121678
Zheng J. R.; Ozisik R.; Siegel R. W. Phase separation and mechanical responses of polyurethane nanocomposites. Polymer, 2006, 47, 7786-7794. doi:10.1016/j.polymer.2006.08.068http://dx.doi.org/10.1016/j.polymer.2006.08.068
Sonnenschein M. F.; Lysenko Z.; Brune D. A.; Wendt B. L.; Schrock A. K. Enhancing polyurethane properties via soft segment crystallization. Polymer, 2005, 46, 10158-10166. doi:10.1016/j.polymer.2005.08.006http://dx.doi.org/10.1016/j.polymer.2005.08.006
Hermida-Merino D.; O’Driscoll B.; Hart L. R.; Harris P. J.; Colquhoun H. M.; Slark A. T.; Prisacariu C.; Hamley I. W.; Hayes W. Enhancement of microphase ordering and mechanical properties of supramolecular hydrogen-bonded polyurethane networks. Polym. Chem., 2018, 9, 3406-3414. doi:10.1039/c8py00604khttp://dx.doi.org/10.1039/c8py00604k
Swolfs Y.; Bertels E.; Verpoest I.; Goderis B. Linking the morphology of a high hard segment content polyurethane to its thermal behaviour and mechanical properties. Polymer, 2015, 81, 1-11. doi:10.1016/j.polymer.2015.11.007http://dx.doi.org/10.1016/j.polymer.2015.11.007
Gadley J.; Andrade R.; Maia J. Effect of soft-to-hard segment ratio on viscoelastic behavior of model thermoplastic polyurethanes during phase transitions. Macromol. Mater. Eng., 2016, 301, 953-963. doi:10.1002/mame.201500450http://dx.doi.org/10.1002/mame.201500450
丁芳, 张欢, 丁明明, 石彤非, 李云琦, 安立佳. 聚合物弹性体材料应力-应变关系的理论研究. 高分子学报, 2019, 50, 1357-1366. doi:10.11777/j.issn1000-3304.2019.19132http://dx.doi.org/10.11777/j.issn1000-3304.2019.19132
Hu S. K.; Shou T.; Zhao X. Y.; wang Z.; Zhang S. J.; Qin X.; Guo M. M.; Zhang L. Q. Rational design of a novel NDI-based thermoplastic polyurethane elastomer with superior heat resistance. Polymer, 2020, 205, 122764. doi:10.1016/j.polymer.2020.122764http://dx.doi.org/10.1016/j.polymer.2020.122764
Ma M. C.; Guo Y. L. Physical properties of polymers under soft and hard nanoconfinement: a review. Chinese J. Polym. Sci., 2020, 38(6), 565-578. doi:10.1007/s10118-020-2380-3http://dx.doi.org/10.1007/s10118-020-2380-3
Ban J. L.; Li S. Q.; Yi C. F.; Zhao J. B.; Zhang Z. Y.; Zhang J. Y. Amorphous and crystallizable thermoplastic polyureas synthesized through a one-pot non-isocyanate route. Chinese J. Polym. Sci., 2019, 37, 43-51. doi:10.1007/s10118-018-2165-0http://dx.doi.org/10.1007/s10118-018-2165-0
Michael M. Coleman, K. H. L., Daniel J. Skrovanek, and Paul C. Painter Hydrogen bonding in polymers. 4. Infrared temperature. Macromolecules, 1986, 19, 2149-2157. doi:10.1021/ma00162a008http://dx.doi.org/10.1021/ma00162a008
Zhu D.; Zhang J.; Bin Y. Z.; Xu C. Y.; Shen J.; Matsuo M. Dielectric studies on the heterogeneity and interfacial property of composites made of polyacene quinone radical polymers and sulfonated polyurethanes. J. Phys. Chem. A, 2012, 116, 2024-2031. doi:10.1021/jp212446nhttp://dx.doi.org/10.1021/jp212446n
王思琦, 陈杰, 朱荧科, 江平开, 黄兴溢. 丝素蛋白膜在高电场下的介电性能. 高分子学报, 2021, 52, 1148-1155. doi:10.11777/j.issn1000-3304.2021.21037http://dx.doi.org/10.11777/j.issn1000-3304.2021.21037
0
Views
84
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution