浏览全部资源
扫码关注微信
高分子材料工程国家重点实验室(四川大学) 四川大学高分子研究所 成都 610065
Yun Huang, E-mail: hyscu1988@scu.edu.cn
Yi Dan, E-mail: danyi@scu.edu.cn
Published:20 February 2023,
Published Online:17 September 2022,
Received:05 June 2022,
Accepted:14 July 2022
扫 描 看 全 文
李鹏飞,江龙,黄云等.紫外光阻隔型低分子量聚乳酸的合成及结构性质研究[J].高分子学报,2023,54(02):206-216.
Li Peng-fei,Jiang Long,Huang Yun,et al.Synthesis and Structural Properties of UV-blocking Low Molecular Weight Polylactide[J].ACTA POLYMERICA SINICA,2023,54(02):206-216.
李鹏飞,江龙,黄云等.紫外光阻隔型低分子量聚乳酸的合成及结构性质研究[J].高分子学报,2023,54(02):206-216. DOI: 10.11777/j.issn1000-3304.2022.22222.
Li Peng-fei,Jiang Long,Huang Yun,et al.Synthesis and Structural Properties of UV-blocking Low Molecular Weight Polylactide[J].ACTA POLYMERICA SINICA,2023,54(02):206-216. DOI: 10.11777/j.issn1000-3304.2022.22222.
以源于可再生资源的芦荟大黄素(AE)为引发剂,引发丙交酯(LA)开环聚合,合成了具有阻隔紫外光功能的低分子量聚乳酸. 系统研究了所合成聚乳酸PLA-En的结构,光学和热学性质. AE分子结构中的醇羟基引发LA聚合形成由En基团(AE分子结构中醇羟基反应后的结构)封端的聚乳酸PLA-En,调控LA与AE之间的摩尔比
n
(20~200),可调控PLA-En数均分子质量
M
n
(0.29×10
4
~2.93×10
4
g/mol);En基团的引入可赋予PLA-En与AE相似的光吸收特征和荧光发射特征,且几乎不受分子量的影响,同时,产物聚乳酸的热稳定性得到提高,PLA-En的热分解温度(
T
d
)比由十六醇(CA)引发合成的相近分子量聚乳酸PLA-Cn (Cn为CA结构中醇羟基反应后的结构)高15 ℃以上,但熔点差别不大.
T
d
的提高赋予PLA-En比PLA-Cn更宽的熔融加工温度窗口,前者超过100 ℃,后者不超过90 ℃. 将质量比3 mass%的PLA-En (
n
=20,
M
n
=0.29×10
4
g/mol)引入商品化聚乳酸PLA (
M
n
= 6.28×10
4
g/mol)中,可赋予PLA较稳定的紫外光阻隔性,但不影响PLA的透明性和力学性能. 本文研究结果为后续发展紫外光阻隔的透明聚乳酸材料奠定了很好的基础.
Low molecular weight polylactide with UV resistance was synthesized through ring-opening polymerization of lactide (LA) using aloe-emodin (AE) derived from renewable resources as initiator. The molecular structure
optical properties and thermal properties of the synthesized PLA were systematically studied. The research results show that the alcoholic hydroxyl group in the AE molecular structure initiates the ring-opening polymerization of LA to form the polylactide PLA-En capped by the En group (the structure after the reaction of the alcoholic hydroxyl group in the AE structure)
the relative number average molecular weight (
M
n
) of PLA-En can be tuned (0.29×10
4
-2.93×10
4
g/mol) by adjusting the molar ratio
n
(20-200) between AE and LA; the introduction of En groups can endow PLA-En with similar light absorption and fluorescence emission characteristics to AE
and is hardly affected by molecular weight. At the same time
the thermal stability of obtained polylactide is improved. The thermal decomposition temperature of PLA-En is more than 15 ℃ higher than that of PLA-Cn (Cn is the structure after the reaction of the alcohol hydroxyl group in the CA structure) with similar molecular weight initiated by hexadecanol (CA)
but the melting point is not much different. The increase in thermal decomposition temperature endows PLA-En with a wider melt processing temperature window than PLA-Cn
the former exceeds 100 ℃ and the latter does not exceed 90 ℃. 3 mass% of PLA-En (
n
=20
M
n
= 0.29×10
4
g/mol) was introduced into commercial polylactide PLA (
M
n
= 6.28×10
4
g/mol)
which could endow PLA with UV light blocking properties
but does not affect the transparency and mechanical properties of PLA. The results of this study lay a good foundation to introduce PLA-En into the PLA matrix material and develop a transparent PLA material with UV light protective ability.
芦荟大黄素低分子量聚乳酸紫外光阻隔助剂
Aloe-emodinLow molecular weightPolylactideUV resistanceAdditive
Sustaita-Rodríguez A.; Vega-Rios A.; Bugarin A.; Ramos-Sánchez V. H.; Camacho-Dávila A. A.; Rocha-Gutiérrez B.; Chávez-Flores D. Chemoenzymatic epoxidation of highly unsaturated fatty acid methyl ester and its application as poly(lactic acid) plasticizer. ACS Sustain. Chem. Eng., 2021, 9, 17016-17024. doi:10.1021/acssuschemeng.1c05934http://dx.doi.org/10.1021/acssuschemeng.1c05934
陈学思, 陈国强, 陶友华, 王玉忠, 吕小兵, 张立群, 朱锦, 张军, 王献红. 生态环境高分子的研究进展. 高分子学报, 2019, 50, 1068-1082. doi:10.11777/j.issn1000-3304.2019.19124http://dx.doi.org/10.11777/j.issn1000-3304.2019.19124
Baek, N; Kim, Y T; Marcy, J E; Duncan S E;, F., O. K. S. Physical properties of nanocomposite polylactic acid films prepared with oleic acid modified titanium dioxide. Food Packag. Shelf., 2018, 17, 30-38. doi:10.1016/j.fpsl.2018.05.004http://dx.doi.org/10.1016/j.fpsl.2018.05.004
Narayanan M.; Loganathan S.; Valapa R. B.; Thomas S.; Varghese T. O. UV protective poly(lactic acid)/rosin films for sustainable packaging. Int. J. Biol. Macromol., 2017, 99, 37-45. doi:10.1016/j.ijbiomac.2017.01.152http://dx.doi.org/10.1016/j.ijbiomac.2017.01.152
Pan F.; Chen L.; Jiang Y.; Xiong L.; Min L.; Xie J.; Qi J.; Xiao H.; Chen Y.; De Hoop C. F. Bio-based UV protective films prepared with polylactic acid (PLA) and phoebe zhennan extractives. Int. J. Biol. Macromol., 2018, 119, 582-587. doi:10.1016/j.ijbiomac.2018.07.189http://dx.doi.org/10.1016/j.ijbiomac.2018.07.189
Bekbolet M. Light effects on food. J. Food Prot., 1990, 53, 430-440. doi:10.4315/0362-028x-53.5.430http://dx.doi.org/10.4315/0362-028x-53.5.430
尤大智, 白雅丽, 李振环. 苯基硅氧烷改性TiO2在聚苯硫醚抗紫外中的性能研究. 高分子学报, 2022, 53, 673-682. doi:10.11777/j.issn1000-3304.2021.21368http://dx.doi.org/10.11777/j.issn1000-3304.2021.21368
Cao Y.; Xu P. W.; Lv P.; Lemstra P. J.; Cai X. X.; Yang W. J.; Dong W. F.; Chen M. Q.; Liu T. X.; Du M. L.; Ma P. M. Excellent UV resistance of polylactide by interfacial stereocomplexation with double-shell-structured TiO2 nanohybrids. ACS Appl. Mater. Interfaces, 2020, 12, 49090-49100. doi:10.1021/acsami.0c14423http://dx.doi.org/10.1021/acsami.0c14423
Huang X. J.; Zeng X. F.; Wang J. X.; Chen J. F. Transparent dispersions of monodispersed ZnO nanoparticles with ultrahigh content and stability for polymer nanocomposite film with excellent optical properties. Ind. Eng. Chem. Res., 2018, 57, 4253-4260. doi:10.1021/acs.iecr.7b04878http://dx.doi.org/10.1021/acs.iecr.7b04878
Zhao Y.; Dan Y. Synthesis and characterization of a polymerizable benzophenone derivative and its application in styrenic polymers as UV-stabilizer. Eur. Polym. J., 2007, 43, 4541-4551. doi:10.1016/j.eurpolymj.2007.07.029http://dx.doi.org/10.1016/j.eurpolymj.2007.07.029
Niu X.; Liu Y.; Fang G.; Huang C.; Rojas O. J.; Pan H. Highly transparent, strong, and flexible films with modified cellulose nanofiber bearing UV shielding property. Biomacromolecules, 2018, 19, 4565-4575. doi:10.1021/acs.biomac.8b01252http://dx.doi.org/10.1021/acs.biomac.8b01252
Cicogna F.; Giachi G.; Rosi L.; Passaglia E.; Coiai S.; Spiniello R.; Prescimone F.; Frediani M. Macromolecular dyes by chromophore-initiated ring opening polymerization of L-lactide. Polymers-Basel., 2020, 12, 1979-2001. doi:10.3390/polym12091979http://dx.doi.org/10.3390/polym12091979
Paseiro-Cerrato R.; Tongchat C.; Franz R. Study of the partition coefficients Kp/f of seven model migrants from LDPE polymer in contact with food simulants. Food Addit. Contam. Part A, 2016, 33, 885-892. doi:10.1080/19440049.2016.1166873http://dx.doi.org/10.1080/19440049.2016.1166873
Ge F. J.; Huang Y.; Luo Y.; Jiang L.; Dan Y. Macromolecular chain structure design, synthesis and analysis of poly(L-lactide) linking ultraviolet absorbing groups. RSC Adv., 2014, 4, 63118-63127. doi:10.1039/c4ra13631dhttp://dx.doi.org/10.1039/c4ra13631d
Yang H.; Shi B.; Xue Y.; Ma Z.; Liu L.; Liu L.; Yu Y.; Zhang Z.; Annamalai P. K.; Song P. Molecularly engineered lignin-derived additives enable fire-retardant, UV-shielding, and mechanically strong polylactide biocomposites. Biomacromolecules, 2021, 22, 1432-1444. doi:10.1021/acs.biomac.0c01656http://dx.doi.org/10.1021/acs.biomac.0c01656
Zhou Y. Y.; Tawiah B.; Noor N.; Zhang Z.; Sun J.; Yuen R. K. K.; Fei B. A facile and sustainable approach for simultaneously flame retarded, UV protective and reinforced poly(lactic acid) composites using fully bio-based complexing couples. Compos. Part B-Eng., 2021, 215, 108833-108843. doi:10.1016/j.compositesb.2021.108833http://dx.doi.org/10.1016/j.compositesb.2021.108833
Wang M. Y.; Shen Y. F.; Jiang L.; Huang Y.; Dan Y. Polylactide materials with ultraviolet filtering function by introducing natural compound. Polym.-Plast. Technol. Mater., 2021, 60, 1098-1105. doi:10.1080/25740881.2021.1876883http://dx.doi.org/10.1080/25740881.2021.1876883
梁孝林, 闻杰, 杨雯迪, 刘文毅, 施冬健, 陈明清. 生物基复合材料的制备及聚酯链段结构对性能的影响研究. 高分子学报, 2019, 50, 147-159. doi:10.11777/j.issn1000-3304.2018.18176http://dx.doi.org/10.11777/j.issn1000-3304.2018.18176
Maan A. A.; Nazir A.; Khan M. K. I.; Ahmad T.; Zia R.; Murid M.; Abrar M. The therapeutic properties and applications of aloe vera : a review. J. Herb. Med., 2018, 12, 1-10. doi:10.1016/j.hermed.2018.01.002http://dx.doi.org/10.1016/j.hermed.2018.01.002
Zang L. X.; Zhao H. M.; Ji X. Y.; Cao W. W.; Zhang Z. G.; Meng P. S. Photophysical properties, singlet oxygen generation efficiency and cytotoxic effects of aloe emodin as a blue light photosensitizer for photodynamic therapy in dermatological treatment. Photoch. Photobio. Sci., 2017, 16, 1088-1094. doi:10.1039/c6pp00453ahttp://dx.doi.org/10.1039/c6pp00453a
Ren G. Y.; Sun H.; Li G.; Fan J. L.; Wu Y.; Cui G. T. Molecular docking and muiltple spectroscopy investigation on the binding characteristics of aloe-emodin to pepsin. J. Mol. Struct., 2019, 1195, 369-377. doi:10.1016/j.molstruc.2019.05.084http://dx.doi.org/10.1016/j.molstruc.2019.05.084
Loschi F.; Faggian M.; Sut S.; Ferrarese I.; Maccari E.; Peron G.; Dall’Acqua S. Development of an LC-DAD-MS-Based method for the analysis of hydroxyanthracene derivatives in food supplements and plant materials. Molecules, 2022, 27, 1932-1943. doi:10.3390/molecules27061932http://dx.doi.org/10.3390/molecules27061932
Nagaoka S.; Fujii A.; Hino M.; Takemoto M.; Yasuda M.; Mishima M.; Ohara K.; Masumoto A.; Uno H.; Nagashima U. UV protection and singlet oxygen quenching activity of aloesaponarin Ⅰ. J. Phys. Chem. B, 2007, 111, 13116-13123. doi:10.1021/jp075224jhttp://dx.doi.org/10.1021/jp075224j
Kowalski A.; Duda A.; Penczek S. Kinetics and mechanism of cyclic esters polymerization initiated with tin(Ⅱ) octoate. 3.† polymerization ofL,L-dilactide. Macromolecules, 2000, 33, 7359-7370. doi:10.1021/ma000125ohttp://dx.doi.org/10.1021/ma000125o
Shen Y. F.; Huang Y.; Jiang L.; Dan Y. Polylactide with improved optical property by introducing natural functional substance: Aloe-emodin. React. Funct. Polym., 2020, 148, 104486. doi:10.1016/j.reactfunctpolym.2020.104486http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104486
Jiang X.; Jiang T.; Zhang X.; Dai H.; Zhang X. Melt processing of poly(vinyl alcohol) through adding magnesium chloride hexahydrate and ethylene glycol as a complex plasticizer. Polym. Eng. Sci., 2012, 52, 2245-2252. doi:10.1002/pen.23166http://dx.doi.org/10.1002/pen.23166
Nikolic L.; Ristic I.; Adnadjevic B.; Nikolic V.; Jovanovic J.; Stankovic M. Novel microwave-assisted synthesis of poly(D,L-lactide): The influence of monomer/initiator molar ratio on the product properties. Sensors, 2010, 10, 5063-5073. doi:10.3390/s100505063http://dx.doi.org/10.3390/s100505063
Kuhn B.; Mohr P.; Stahl M. Intramolecular hydrogen bonding in medicinal chemistry. J. Med. Chem., 2010, 53, 2601-2611. doi:10.1021/jm100087shttp://dx.doi.org/10.1021/jm100087s
Nagaoka S. I.; Ohara K.; Takei M.; Nakamura M.; Mishima M.; Nagashima U. UV protection and singlet-oxygen quenching activity of intramolecularly hydrogen-bonded hydroxyanthraquinone derivatives found in aloe. J. Photochem. Photobiol. A, 2011, 225, 106-112. doi:10.1016/j.jphotochem.2012.06.007http://dx.doi.org/10.1016/j.jphotochem.2012.06.007
Mellado M.; Madrid A.; Peña-cortés H.; López R.; Jara C.; Espinoza L. Antioxidant activity of anthraquinones isolated from leaves of muehlenbeckia hastulata (J.E. SM.) Johnst. (polygonaceae). J. Chil. Chem. Soc., 2013, 58, 1767-1770. doi:10.4067/s0717-97072013000200028http://dx.doi.org/10.4067/s0717-97072013000200028
Najarro M. C.; Nikolic M.; Iruthayaraj J.; Johannsen I. Tuning the lignin-caprolactone copolymer for coating metal surfaces. ACS Appl. Polym. Mater., 2020, 2, 5767-5778. doi:10.1021/acsapm.0c01026http://dx.doi.org/10.1021/acsapm.0c01026
Basko M.; Bednarek M. Synthesis of functionalized polylactide by cationic activated monomer polymerization. React. Funct. Polym., 2012, 72, 213-220. doi:10.1016/j.reactfunctpolym.2012.02.003http://dx.doi.org/10.1016/j.reactfunctpolym.2012.02.003
Penczek S.; Duda A.; Szymanski R. Intra- and intermolecular chain transfer to macromolecules with chain scission. The case of cyclic esters. Macromol. Symp., 1998, 132, 441-449. doi:10.1002/masy.19981320141http://dx.doi.org/10.1002/masy.19981320141
Maud S.; Alain S. Controlled ring-opening polymerization of lactones and lactide initiated by lanthanum isopropoxide, 2†. Mechanistic studies. Macromol. Chem. Phys., 2002, 203, 2591-2603. doi:10.1002/macp.200290043http://dx.doi.org/10.1002/macp.200290043
Morton R. A.; Earlam W. T. Spectra of anthraquinone derivatives. J. Am. Chem. Soc., 1941, 159-169. doi:10.1039/jr9410000159http://dx.doi.org/10.1039/jr9410000159
Diaz A. Absorption and emission spectroscopy and photochemistry of 1,10-anthraquinone derivatives: a review. J Photochem. Photobiol. A, 1990, 53, 141-167. doi:10.1016/1010-6030(90)87120-zhttp://dx.doi.org/10.1016/1010-6030(90)87120-z
Bonesi S. M.; Erra-Balsells R. Electronic spectroscopy of carbazole and N- and C-substituted carbazoles in homogeneous media and in solid matrix. J. Lumin., 2001, 93, 51-74. doi:10.1016/s0022-2313(01)00173-9http://dx.doi.org/10.1016/s0022-2313(01)00173-9
Cam D.; Marucci M. Influence of residual monomers and metals on poly(L-lactide) thermal stability. Polym. Degrad. Stabil., 1997, 38, 1879-1884. doi:10.1016/s0032-3861(96)00711-2http://dx.doi.org/10.1016/s0032-3861(96)00711-2
0
Views
62
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution