浏览全部资源
扫码关注微信
1.昆明理工大学化学工程学院 昆明 650504
2.华东理工大学机械与动力工程学院 上海 200237
Jin Sha, E-mail: sjin@ecust.edu.cn
Tao Chen, E-mail: tchen@kust.edu.cn
Published:20 February 2023,
Published Online:13 October 2022,
Received:13 June 2022,
Accepted:22 July 2022
扫 描 看 全 文
赵海利,魏中华,沙金等.苯硼酸聚合物刷微图案的制备及响应性能[J].高分子学报,2023,54(02):257-265.
Zhao Hai-li,Wei Zhong-hua,Sha Jin,et al.Fabrication and Stimuli-responsiveness of Phenylboronic Acid-containing Polymer Brush Micropattern[J].ACTA POLYMERICA SINICA,2023,54(02):257-265.
赵海利,魏中华,沙金等.苯硼酸聚合物刷微图案的制备及响应性能[J].高分子学报,2023,54(02):257-265. DOI: 10.11777/j.issn1000-3304.2022.22227.
Zhao Hai-li,Wei Zhong-hua,Sha Jin,et al.Fabrication and Stimuli-responsiveness of Phenylboronic Acid-containing Polymer Brush Micropattern[J].ACTA POLYMERICA SINICA,2023,54(02):257-265. DOI: 10.11777/j.issn1000-3304.2022.22227.
以3-甲基丙烯酰胺基苯硼酸(MAPBA)为聚合反应单体,通过数字微镜器件(DMD)调控光辐照引发表面原子转移自由基聚合(ATRP)反应制备苯硼酸(PMAPBA)聚合物刷微图案. 采用光学显微镜、X射线光电子能谱测试(XPS)和飞行时间二次离子质谱测试(TOF-SIMS)对所制备微图案的几何形状、化学组成及分布进行表征,结果表明PMAPBA聚合物刷微图案在硅基体表面的成功制备. 研究了PMAPBA聚合物刷微图案的pH和葡萄糖响应性并采用激光共聚焦显微镜对其结果进行表征分析,结果表明随着溶液pH值的升高,苯硼酸发生电离产生带负电的亲水离子会阻碍免疫球蛋白(IgG)而促进葡聚糖(dextran)在其表面的吸附;此外,当溶液中加入葡萄糖后,电离产生的亲水离子不断与葡萄糖结合而导致IgG分子的脱落. 这种具有pH和葡萄糖双重响应性的PMAPBA聚合物刷图案化表面能够为动态生物活性表面和药物可控释放系统的制备提供新的途径.
The smart biointerface with the capability to dynamically control the interaction between the biomolecules and material interface has attracted much attention. Here
a responsive smart biointerface was created based on the boronic acid-containing polymer brush micropattern. With 3-methacrylamidophenylboronic acid as monomer
micropatterned poly(3-methacrylamidophenylboronic acid) (PMAPBA) brushes were fabricated through combining the digital mirror device (DMD)-based light modulation technique and surface-initiated photoinduced atom transfer radical polymerization (Photo-ATRP). A series of methods such as optical microscopy
X-ray photoelectron spectroscopy
and time of flight-secondary ion mass spectrometry were applied to characterize the geometric shape
chemical composition and distribution of the resulting brush structure. The pH-responsiveness of micropatterned PMAPBA brushes was investigated with fluorescein isothiocyanate stained immunoglobulin G (IgG)
and the result from laser confocal microscope revealed that the increase in the pH of the solution will hinder the immobilization of IgG protein on the PMAPBA brushes
which was attributable to the negatively charged hydrophilic ions produced by the ionization of phenylboronic acid. Besides
the catechol-boronate interaction between phenylboronic acid moieties and the secondary hydroxyls on the dextran could promote the immobilization of dextran on the PMAPBA brushes under neutral and alkaline conditions. In addition
the sugar-responsiveness of PMAPBA brushes enabled dynamic modulation of IgG adsorption behavior. The PMAPBA brushes micropatterned surface with dual stimuli-responsive could provide a novel route for the preparation of dynamic bioactive surfaces and controlled drug release systems.
苯硼酸聚合物刷微图案pH响应糖响应
Phenylboronic acidPolymer brush micropatternpH-ResponsivenessSugar-responsiveness
Zoppe J. O.; Ataman N. C.; Mocny P.; Wang J.; Moraes J.; Klok H. A. Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem. Rev., 2017, 117(3), 1105-1318. doi:10.1021/acs.chemrev.6b00314http://dx.doi.org/10.1021/acs.chemrev.6b00314
Xie Z.; Gan T. S.; Fang L. Y.; Zhou X. C. Recent progress in creating complex and multiplexed surface-grafted macromolecular architectures. Soft Matter, 2020, 16(38), 8736-8759. doi:10.1039/d0sm01043jhttp://dx.doi.org/10.1039/d0sm01043j
Krishnamoorthy M.; Hakobyan S.; Ramstedt M.; Gautrot J. E. Surface-initiated polymer brushes in the biomedical field: Applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chem. Rev., 2014, 114(21), 10976-11026. doi:10.1021/cr500252uhttp://dx.doi.org/10.1021/cr500252u
Sim X. M.; Wang C. G.; Liu X.; Goto A. Multistimuli responsive reversible cross-linking-decross-linking of concentrated polymer brushes. ACS Appl. Mater. Interfaces, 2020, 12(25), 28711-28719. doi:10.1021/acsami.0c07508http://dx.doi.org/10.1021/acsami.0c07508
Wang S. Y.; Liu Q. H.; Li L.; Urban M. W. Recent advances in stimuli-responsive commodity polymers. Macromol. Rapid Commun., 2021, 42(18), e2100054. doi:10.1002/marc.202100054http://dx.doi.org/10.1002/marc.202100054
Banuprasad T. N.; Vinay T. V.; Subash C. K.; Varghese S.; George S. D.; Varanakkottu S. N. Fast transport of water droplets over a thermo-switchable surface using rewritable wettability gradient. ACS Appl. Mater. Interfaces, 2017, 9(33), 28046-28054. doi:10.1021/acsami.7b07451http://dx.doi.org/10.1021/acsami.7b07451
Liao Q. Y.; Chen D.; Zhang X. H.; Ma Y. H.; Zhao C. W.; Yang W. T. UV-assisted Li+-catalyzed radical grafting polymerization of vinyl ethers: A new strategy for creating hydrolysis-resistant and long-lived polymer brushes as a smart surface coating. Langmuir, 2021, 37(14), 4102-4111. doi:10.1021/acs.langmuir.0c03480http://dx.doi.org/10.1021/acs.langmuir.0c03480
van Eck G. C. R.; Chiappisi L.; de Beer S. Fundamentals and applications of polymer brushes in air. ACS Appl. Polym. Mater., 2022, 4(5), 3062-3087. doi:10.1021/acsapm.1c01615http://dx.doi.org/10.1021/acsapm.1c01615
Rüttiger C.; Hübner H.; Schöttner S.; Winter T.; Cherkashinin G.; Kuttich B.; Stühn B.; Gallei M. Metallopolymer-based block copolymers for the preparation of porous and redox-responsive materials. ACS Appl. Mater. Interfaces, 2018, 10(4), 4018-4030. doi:10.1021/acsami.7b18014http://dx.doi.org/10.1021/acsami.7b18014
Atta A. M.; Abdel-Bary E. M.; Rezk K.; Abdel-Azim A. Fast responsive poly(acrylic acid-co-N-isopropyl acrylamide) hydrogels based on new crosslinker. J. Appl. Polym. Sci., 2009, 112(1), 114-122. doi:10.1002/app.28950http://dx.doi.org/10.1002/app.28950
Fang L. Y.; Zhang J. H.; Chen Y. X.; Liu S. L.; Chen Q. Y.; Ke A.; Duan L. T.; Huang S. L.; Tian X. L.; Xie Z. High-resolution patterned functionalization of slippery “liquid-like” brush surfaces via microdroplet-confined growth of multifunctional polydopamine arrays. Adv. Funct. Mater., 2021, 31(19), 2100447. doi:10.1002/adfm.202100447http://dx.doi.org/10.1002/adfm.202100447
Kim H.; Kim K.; Lee S. J. Nature-inspired thermo-responsive multifunctional membrane adaptively hybridized with PNIPAm and PPy. NPG Asia Mater., 2017, 9(10), e445. doi:10.1038/am.2017.168http://dx.doi.org/10.1038/am.2017.168
Liu L.; Tian X. H.; Ma Y.; Duan Y. Q.; Zhao X.; Pan G. Q. A versatile dynamic mussel-inspired biointerface: From specific cell behavior modulation to selective cell isolation. Angew. Chem. Int. Ed., 2018, 57(26), 7878-7882. doi:10.1002/anie.201804802http://dx.doi.org/10.1002/anie.201804802
Zeng Y.; Zhu C. Y.; Tao L. Stimuli-responsive multifunctional phenylboronic acid polymers via multicomponent reactions: From synthesis to application. Macromol. Rapid Commun., 2021, 42(18), e2100022. doi:10.1002/marc.202100022http://dx.doi.org/10.1002/marc.202100022
Brooks W. L. A.; Sumerlin B. S. Synthesis and applications of boronic acid-containing polymers: from materials to medicine. Chem. Rev., 2016, 116(3), 1375-1397. doi:10.1021/acs.chemrev.5b00300http://dx.doi.org/10.1021/acs.chemrev.5b00300
武彤, 何柳, 郑丹丹, 吴小玲, 罗伟昂, 袁丛辉, 戴李宗. 动态硼酸酯键管控邻苯二酚基团与功能黏附性高分子设计. 高分子学报, 2022, 53(7): 796-811. doi:10.11777/j.issn1000-3304.2022.22061http://dx.doi.org/10.11777/j.issn1000-3304.2022.22061
Li D. Y.; Xu L. Z.; Wang J.; Gautrot J. E. Responsive polymer brush design and emerging applications for nanotheranostics. Adv. Healthc. Mater., 2021, 10(5), e2000953. doi:10.1002/adhm.202000953http://dx.doi.org/10.1002/adhm.202000953
Zhang J. X.; Gai M. Y.; Ignatov A. V.; Dyakov S. A.; Wang J.; Gippius N. A.; Frueh J.; Sukhorukov G. B. Stimuli-responsive microarray films for real-time sensing of surrounding media, temperature, and solution properties via diffraction patterns. ACS Appl. Mater. Interfaces, 2020, 12(16), 19080-19091. doi:10.1021/acsami.0c05349http://dx.doi.org/10.1021/acsami.0c05349
Li W.; Sheng W. B.; Wegener E.; Du Y. H.; Li B.; Zhang T.; Jordan R. Capillary microfluidic-assisted surface structuring. ACS Macro. Lett., 2020, 9(3), 328-333. doi:10.1021/acsmacrolett.9b00921http://dx.doi.org/10.1021/acsmacrolett.9b00921
Zhao H. L.; Sha J.; Wu T.; Chen T.; Chen X.; Ji H. J.; Wang Y.; Zhu H. H.; Xie L. S.; Ma Y. L. Spatial modulation of biomolecules immobilization by fabrication of hierarchically structured PEG-derived brush micropatterns: An versatile cellular microarray platform. Appl. Surf. Sci., 2020, 529, 147056. doi:10.1016/j.apsusc.2020.147056http://dx.doi.org/10.1016/j.apsusc.2020.147056
Madsen J.; Ducker R. E.; Al Jaf O.; Cartron M. L.; Alswieleh A. M.; Smith C. H.; Hunter C. N.; Armes S. P.; Leggett G. J. Fabrication of microstructured binary polymer brush corrals with integral pH sensing for studies of proton transport in model membrane systems. Chem. Sci., 2018, 9(8), 2238-2251. doi:10.1039/c7sc04424khttp://dx.doi.org/10.1039/c7sc04424k
Zuo X. L.; Wang S. F.; Le X. X.; Lu W.; Chen T. Self-healing polymeric hydrogels: toward multifunctional soft smart materials. Chinese J. Polym. Sci., 2021, 39(10), 1262-1280. doi:10.1007/s10118-021-2612-1http://dx.doi.org/10.1007/s10118-021-2612-1
Zhao H. L.; Sha J.; Wang X. F.; Jiang Y. C.; Chen T.; Wu T.; Chen X.; Ji H. J.; Gao Y.; Xie L. S.; Ma Y. L. Spatiotemporal control of polymer brush formation through photoinduced radical polymerization regulated by DMD light modulation. Lab. Chip., 2019, 19(16), 2651-2662. doi:10.1039/c9lc00419jhttp://dx.doi.org/10.1039/c9lc00419j
Luo J.; Huang J.; Cong J. J.; Wei W.; Liu X. Y. Double recognition and selective extraction of glycoprotein based on the molecular imprinted graphene oxide and boronate affinity. ACS Appl. Mater. Interfaces, 2017, 9(8), 7735-7744. doi:10.1021/acsami.6b14733http://dx.doi.org/10.1021/acsami.6b14733
李丹, 付免, 钱海, 黄文龙. 苯硼酸类糖敏感材料在胰岛素控释系统中的应用. 中国药科大学学报, 2017, 48(3): 259-267. doi:10.11665/j.issn.1000-5048.20170302http://dx.doi.org/10.11665/j.issn.1000-5048.20170302
Zhan W. J.; Qu Y. C.; Wei T.; Hu C. M.; Pan Y.; Yu Q.; Chen H. Sweet switch: sugar-responsive bioactive surfaces based on dynamic covalent bonding. ACS Appl. Mater. Interfaces, 2018, 10(13), 10647-10655. doi:10.1021/acsami.7b18166http://dx.doi.org/10.1021/acsami.7b18166
Li D. J.; Chen Y.; Liu Z. Boronate affinity materials for separation and molecular recognition: structure, properties and applications. Chem. Soc. Rev., 2015, 44(22), 8097-8123. doi:10.1039/c5cs00013khttp://dx.doi.org/10.1039/c5cs00013k
0
Views
50
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution