浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
Chuan-jiang Qin, E-mail: cjqin@ciac.ac.cn
Yan-xiang Cheng, E-mail: yanxiang@ciac.ac.cn
Published:20 February 2023,
Published Online:23 September 2022,
Received:17 June 2022,
Accepted:19 August 2022
扫 描 看 全 文
邓浩,姚兵,窦昆昆等.主链为咔唑-吖啶给体/侧基为三联吡啶受体的热诱导延迟荧光共轭聚合物合成及发光性质[J].高分子学报,2023,54(02):217-224.
Deng Hao,Yao Bing,Dou Kun-kun,et al.Synthesis and Luminescent Properties of Thermally Activated Delayed Fluorescence Conjugated Polymers with Carbazole/Acridine as Backbone Donor and Terpyridine as Pendant Acceptor[J].ACTA POLYMERICA SINICA,2023,54(02):217-224.
邓浩,姚兵,窦昆昆等.主链为咔唑-吖啶给体/侧基为三联吡啶受体的热诱导延迟荧光共轭聚合物合成及发光性质[J].高分子学报,2023,54(02):217-224. DOI: 10.11777/j.issn1000-3304.2022.22232.
Deng Hao,Yao Bing,Dou Kun-kun,et al.Synthesis and Luminescent Properties of Thermally Activated Delayed Fluorescence Conjugated Polymers with Carbazole/Acridine as Backbone Donor and Terpyridine as Pendant Acceptor[J].ACTA POLYMERICA SINICA,2023,54(02):217-224. DOI: 10.11777/j.issn1000-3304.2022.22232.
成膜性能优异的聚合物发光材料适宜于可溶液加工大尺寸显示及照明器件制作,赋予其热诱导延迟荧光(TADF)特征能够有效改善器件发光性能. 本工作以苯环对位桥连三联吡啶的吖啶衍生物(ABTPy)为TADF单体、咔唑(Cz)衍生物为共聚单体,利用交叉偶联反应,控制TADF单体摩尔投料比为1%、5%、10%和50%,合成了4个主链为咔唑-吖啶给体/侧基为三联吡啶受体的共轭聚合物PCzABTPy1~PCzABTPy50. 低含量TADF单元聚合物溶液的光致发光光谱显示了低聚咔唑片段和TADF单元的双峰发射,发光峰位是420和488 nm,聚合物薄膜仅出现单峰发射,发光峰由470 nm红移至508 nm. 聚合物瞬态荧光衰减光谱均包含纳秒级瞬时荧光(12~15 ns)和微秒级延迟荧光(1.3~4.8 μs),证实聚合物具有TADF特性. 以聚合物为发光层的非掺杂溶液加工电致发光器件实现了蓝光发射,发光波长位于452~484 nm. 其中,PCzABTPy10发光器件展示了最优的发光性能,最大外量子效率(EQE)为9.4%,启亮电压为3.0 eV. 在亮度1000 cd/m
2
时,器件EQE仍保持在7.6%.
Luminescent polymers are suitable for the fabrication of solution-processed large-scale display and lighting devices due to their superior film-forming ability
and can effectively improve the device performances while endowed with thermally activated delayed fluorescence (TADF) characteristic. In this work
four polymers with carbazole/acridine backbone donor and terpyridine pendant acceptor
named PCzABTPy1‒PCzABTPy50
are synthesized by using the cross coupling copolymerization of two carbazole derivative monomers and a acridine derivative TADF monomer (ABTPy) containing terpyridine group
and managing the TADF monomer feed molar ratio of 1%
5%
10% and 50%. The polymers with low content of TADF unit show dual emissions peaked at 420 and 488 nm in dilute solution
whereas all polymers only display a single emissive peak ranging from 470 nm to 508 nm in neat film. Their TADF features are confirmed by the transient photoluminescence decay spectra
in which a short-lifetime prompt component (12‒15 ns) and a long-lifetime delayed component (1.3‒4.8 μs) are clearly detected. The non-doped and solution-processed organic light-emitting diodes (OLEDs) using the polymer neat films as emissive layers all show blue emissions with emissive wavelength from 452 nm to 484 nm. The OLED based on PCZABTPy10 achieves excellent performances with the maximum external quantum efficiency (EQE) of up to 9.4% and the low turn-on voltage of 3.0 V. Moreover
the EQE still remains 7.4% at the luminance of 1000 cd/m
2
.
热诱导延迟荧光共轭聚合物三联吡啶蓝光电致发光
Thermally activated delayed fluorescenceConjugated polymerTerpyridineBlue emissionElectroluminescence
Tao Y.; Yuan K.; Chen T.; Xu P.; Li H. H.; Chen R. F.; Zheng C.; Zhang L.; Huang W. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. Adv. Mater., 2014, 26, 7931-7958. doi:10.1002/adma.201402532http://dx.doi.org/10.1002/adma.201402532
Yang Z. Y.; Mao Z.; Xie Z. L.; Zhang Y.; Liu S. W.; Zhao J.; Xu J. R.; Chi Z. G.; Aldred M. P. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev., 2017, 46, 915-1016. doi:10.1039/c6cs00368khttp://dx.doi.org/10.1039/c6cs00368k
Wei Q.; Fei N. N.; Islam A.; Lei T.; Hong L.; Peng R. X.; Fan X.; Chen L.; Gao P. Q.; Ge Z. Y. Small-molecule emitters with high quantum efficiency: mechanisms, structures, and applications in OLED devices. Adv. Opt. Mater., 2018, 6, 1800512. doi:10.1002/adom.201800512http://dx.doi.org/10.1002/adom.201800512
Im Y.; Kim M.; Cho Y. J.; Seo J. A.; Yook K. S.; Lee J. Y. Molecular design strategy of organic thermally activated delayed fluorescence emitters. Chem. Mater., 2017, 29, 1946-1963. doi:10.1021/acs.chemmater.6b05324http://dx.doi.org/10.1021/acs.chemmater.6b05324
邵世洋, 丁军桥, 王利祥. 高分子发光材料研究进展. 高分子学报, 2018, (2), 198-216. doi:10.11777/j.issn1000-3304.2018.17289http://dx.doi.org/10.11777/j.issn1000-3304.2018.17289
Zou Y.; Gong S. L.; Xie G. H.; Yang C. L. Design strategy for solution-processable thermally activated delayed fluorescence emitters and their applications in organic light-emitting diodes. Adv. Opt. Mater., 2018, 6, 1800568. doi:10.1002/adom.201800568http://dx.doi.org/10.1002/adom.201800568
华磊, 闫寿科, 任忠杰. 聚合物热激活延迟荧光材料的分子设计与器件性能. 高分子学报, 2020, 51(5), 457-468. doi:10.11777/j.issn1000-3304.2020.19224http://dx.doi.org/10.11777/j.issn1000-3304.2020.19224
Zhao L. Y.; Liu Y. N.; Wang S. F.; Tao Y. T.; Wang F. F.; Zhang X. W.; Huang W. Novel hyperbranched polymers as host materials for green thermally activated delayed fluorescence OLEDs. Chinese J. Polym. Sci., 2017, 35, 490-502. doi:10.1007/s10118-017-1881-1http://dx.doi.org/10.1007/s10118-017-1881-1
杨云, 赵磊, 王淑萌, 丁军桥, 王利祥. 基于咔唑和3,3'-二甲基二苯醚共聚物主链的红光热活化延迟荧光聚合物的合成与表征. 高分子学报, 2019, 50(7), 685-694. doi:10.11777/j.issn1000-3304.2018.18266http://dx.doi.org/10.11777/j.issn1000-3304.2018.18266
Zhang B. H.; Cheng Y. X. Recent advances in conjugated TADF polymer featuring in backbone-donor/pendant-acceptor structure: material and device perspectives. Chem. Rec., 2019, 19, 1624-1643. doi:10.1002/tcr.201800152http://dx.doi.org/10.1002/tcr.201800152
Xie Y. J.; Li Z. Thermally activated delayed fluorescent polymers. J. Polym. Sci. Part A: Polym. Chem., 2017, 55, 575-584. doi:10.1002/pola.28448http://dx.doi.org/10.1002/pola.28448
Zhu Y. H.; Zhang Y. W.; Yao B.; Wang Y. J.; Zhang Z. L.; Zhan H. M.; Zhang B. H.; Xie Z. Y.; Wang Y.; Cheng Y. X. Synthesis and electroluminescence of a conjugated polymer with thermally activated delayed fluorescence. Macromolecules, 2016, 49, 4373-4377. doi:10.1021/acs.macromol.6b00430http://dx.doi.org/10.1021/acs.macromol.6b00430
Zhu Y. H.; Yang Y. K.; Wang Y. J.; Yao B.; Lin X. D.; Zhang B. H.; Zhan H. M.; Xie Z. Y.; Cheng Y. X. Improving luminescent performances of thermally activated delayed fluorescence conjugated polymer by inhibiting the intra-and interchain quenching. Adv. Opt. Mater., 2018, 6, 1701320. doi:10.1002/adom.201701320http://dx.doi.org/10.1002/adom.201701320
Yang Y. K.; Wang S. M.; Zhu Y. H.; Wang Y. J.; Zhan H. M.; Cheng Y. X. Thermally activated delayed fluorescence conjugated polymers with backbone-donor/pendant-acceptor architecture for nondoped OLEDs with high external quantum efficiency and low roll-off. Adv. Funct. Mater., 2018, 28, 1706916. doi:10.1002/adfm.201706916http://dx.doi.org/10.1002/adfm.201706916
Wang Y. J.; Zhu Y. H.; Lin X. D.; Yang Y. K.; Zhang B. H.; Zhan H. M.; Xie Z. Y.; Cheng Y. X. Efficient non-doped yellow OLEDs based on thermally activated delayed fluorescence conjugated polymers with an acridine/carbazole donor backbone and triphenyltriazine acceptor pendant. J. Mater. Chem. C., 2018, 6, 568-574. doi:10.1039/c7tc04994chttp://dx.doi.org/10.1039/c7tc04994c
Yang Y. K.; Li K. F.; Wang C. X.; Zhan H. M.; Cheng Y. X. Effect of a pendant acceptor on thermally activated delayed fluorescence properties of conjugated polymers with backbone-donor/pendant-acceptor architecture. Chem. Asian J., 2019, 14, 574-581. doi:10.1002/asia.201801813http://dx.doi.org/10.1002/asia.201801813
Yang Y. K.; Zhu. Y. H.; Wang, Y. J.; Wang, S. M.; Zhan, H. M.; Cheng, Y. X. Synthesis and electroluminescent performance of thermally activated delayed fluorescence-conjugated polymers with simple formylphenyl as pendant acceptor. J. Polym. Sci. Part A: Polym. Chem., 2018, 56, 1989-1996. doi:10.1002/pola.29085http://dx.doi.org/10.1002/pola.29085
Su S. J.; Chiba T.; Takeda T.; Kido J. Pyridine-containing triphenylbenzene derivatives with high electron mobility for highly efficient phosphorescent OLEDs. Adv. Mater., 2008, 20, 2125-2130. doi:10.1002/adma.200701730http://dx.doi.org/10.1002/adma.200701730
Mutai T.; Satou H.; Araki K. Reproducible on-off switching of solid-state luminescence by controlling molecular packing through heat-mode interconversion. Nat. Mater., 2005, 4, 685-687. doi:10.1038/nmat1454http://dx.doi.org/10.1038/nmat1454
殷瑕, 伍泽鑫, 庞尔宝, 朱渊杰, 王泓中, 朱文清, 贺英. 新型咔唑/喹啉基AIEE-TADF蓝光材料及其器件研究. 高分子学报, 2021, 52, 1578-1590. doi:10.11777/j.issn1000-3304.2021.21144http://dx.doi.org/10.11777/j.issn1000-3304.2021.21144
Sasabe H.; Hayasaka Y.; Komatsu R.; Nakao K.; Kido J. Highly luminescent π-conjugated terpyridine derivatives exhibiting thermally activated delayed fluorescence. Chem. Eur. J., 2017, 23, 114-119. doi:10.1002/chem.201604303http://dx.doi.org/10.1002/chem.201604303
Kim J.; Kwon Y. S.; Shin W. S.; Moon S. J.; Park T. Carbazole-based copolymers: effects of conjugation breaks and steric hindrance. Macromolecules, 2011, 44, 1909-1919. doi:10.1021/ma102467whttp://dx.doi.org/10.1021/ma102467w
张树仁, 姚兵, 张子龙, 张保华, 李晓, 程延祥. 端基为橙光基团的聚芴合成和发光性质. 高分子学报, 2016, (10), 1359-1367. doi:10.11777/j.issn1000-3304.2016.16026http://dx.doi.org/10.11777/j.issn1000-3304.2016.16026
Berggren M.; Gustafsson G.; Inganäs O.; Andersson M. R.; Wennerström O.; Hjertberg T. Green electroluminescence in poly-(3-cyclohexylthiophene) light-emitting diodes. Adv. Mater., 1994, 6, 488-490. doi:10.1002/adma.19940060611http://dx.doi.org/10.1002/adma.19940060611
Zhang C.; Braun D.; Heeger A. J. Light-emitting diodes from partially conjugated poly(p-phenylene vinylene). J. Appl. Phys., 1993, 73, 5177-5180. doi:10.1063/1.353794http://dx.doi.org/10.1063/1.353794
Grem G.; Leditzky G.; Ullrich B.; Leising G. Realization of a blue-light-emitting device using poly(p-phenylene). Adv. Mater., 1992, 4, 36-37. doi:10.1002/adma.19920040107http://dx.doi.org/10.1002/adma.19920040107
0
Views
65
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution