浏览全部资源
扫码关注微信
1.西南科技大学材料与化学学院 绵阳 621010
2.中国工程物理研究院化工材料研究所 绵阳 621900
3.西南科技大学生物质材料教育部工程研究中心 绵阳 621010
Xiao-yan Lin, E-mail: linxiaoyan@swust.edu.cn
Ke-ping Chen, E-mail: kepingchen@caep.cn
Published:20 February 2023,
Published Online:21 September 2022,
Received:21 June 2022,
Accepted:25 August 2022
扫 描 看 全 文
王义霞,梁书恩,宋宁宁等.硬段含量对聚氨酯弹性体的吸水动力学及力学性能的影响[J].高分子学报,2023,54(02):277-285.
Wang Yi-xia,Liang Shu-en,Song Ning-ning,et al.Effect of Hard Segment Content on the Water Absorption Dynamic and Mechanical Properties of Polyurethane Elastomer[J].ACTA POLYMERICA SINICA,2023,54(02):277-285.
王义霞,梁书恩,宋宁宁等.硬段含量对聚氨酯弹性体的吸水动力学及力学性能的影响[J].高分子学报,2023,54(02):277-285. DOI: 10.11777/j.issn1000-3304.2022.22234.
Wang Yi-xia,Liang Shu-en,Song Ning-ning,et al.Effect of Hard Segment Content on the Water Absorption Dynamic and Mechanical Properties of Polyurethane Elastomer[J].ACTA POLYMERICA SINICA,2023,54(02):277-285. DOI: 10.11777/j.issn1000-3304.2022.22234.
合成了硬段含量分别为30 wt%、37 wt%和45 wt%的聚醚型聚氨酯弹性体(PTMG-PU). 研究了硬段含量、水浸温度和试样厚度对PTMG-PU吸水动力学的影响. 研究结果表明:PTMG-PU在25 ℃~60 ℃之间的吸水动力学过程可以用Fick模型进行拟合;扩散系数和平衡吸水率随着硬段含量的增加均呈逐渐降低的趋势,水分子扩散活化能和指前因子均随着硬段含量的增加而增加,说明硬段含量越高,水分子需要克服的传输能垒越高. 进一步,吸水导致聚氨酯弹性体的拉伸断裂强度、100%定伸强度和拉伸模量等力学性能出现明显的下降,这不仅是由于水分子与聚氨酯弹性体的软段相发生了增塑作用,而且水分子也与部分硬段相微区发生了作用,导致部分硬段相微区瓦解.
Polyether polyurethane elastomers (PTMG-PU) with hard segment contents of 30 wt%
37 wt% and 45 wt% were synthesized. The effects of hard segment content
immersion temperature and sample thickness on the water absorption dynamics of PTMG-PU were studied. The microphase separation structure evolution of PTMG-PU during water absorption was characterized by small Angle X-ray scattering technique. The results show that the dynamic process of water absorption of PTMG-PU between 25 and 60 ℃ can be fitted by Fick's model. The diffusion coefficient and equilibrium water absorption rate decrease gradually with the increase of hard segment content
but the time required to reach the equilibrium water absorption rate is about 22 h. In addition
the diffusion activation energy and preexponential factor of water molecules increase with the increase of hard segment content
indicating that more energy is needed to overcome the energy barrier transmitted by water molecules in PTMG-PU. Furthermore
the mechanical properties of PTMG-PU
such as tensile strength and tensile modulus
decreased significantly during the process of water absorption
which was not only due to the plasticization of water molecules with the soft phase of polyurethane elastomer
but also due to the interaction of water molecules with some hard microdomains
leading to the disintegration of some hard microdomains. This provides theoretical guidance for the design and development of high-performance PTMG-PU in high humidity environment and theoretical support for the application of PTMG-PU in practical engineering.
聚氨酯弹性体吸水动力学力学性能微相分离结构
Polyurethane elastomerWater absorption dynamicMechanical propertyMicrophase separation structure
Xie F. W.; Zhang T. L.; Bryant P.; Kurusingal V.; Colwell J. M.; Laycock B. Degradation and stabilization of polyurethane elastomers. Prog. Polym. Sci., 2019, 90, 211-268. doi:10.1016/j.progpolymsci.2018.12.003http://dx.doi.org/10.1016/j.progpolymsci.2018.12.003
Lin C. M.; Tian Q.; Chen K. P.; He G. S.; Zhang J. H.; Liu S. J.; Almasy L. Polymer bonded explosives with highly tunable creep resistance based on segmented polyurethane copolymers with different hard segment contents. Compos. Sci. Technol., 2017, 146, 10-19. doi:10.1016/j.compscitech.2017.04.008http://dx.doi.org/10.1016/j.compscitech.2017.04.008
曹哲, 介素云, 李伯耿. 环氧丁羟型聚氨酯弹性体的制备与性能. 高分子学报, 2017, (8), 1350-1357. doi:10.11777/j.issn1000-3304.2017.16346http://dx.doi.org/10.11777/j.issn1000-3304.2017.16346
相宁, 葛勇, 张晓雯, 王博伦, 郑梦瑶, 颜悦. 熔体温度对注射成型热塑性聚氨酯制件残余应力及外形精度的影响. 材料工程, 2022, 50, 148-156. doi:10.11868/j.issn.1001-4381.2020.000122http://dx.doi.org/10.11868/j.issn.1001-4381.2020.000122
张航天, 马婧伊, 杨甜, 张树, 吴一弦. 聚异丁烯基热塑弹性体设计合成与性能. 高分子学报, 2022, 53, 56-66.
陆刚, 帅长庚, 杨雪, 王源升. 紫外老化对聚醚-MDI型聚氨酯弹性体性能的影响. 高分子材料科学与工程, 2020, 36, 117-120, 126.
翟丽, 王功海, 彭威, 成伟洪. MDI型聚氨酯弹性体湿热性能研究. 化学推进剂与高分子材料, 2018, 16, 72-75.
杨慧, 王相鹏, 郑津, 薛惠芸, 丁玲, 李志辉, 邹友思. 热塑性聚氨酯弹性体的老化机理. 厦门大学学报(自然科学版), 2017, 56, 370-377.
Yu Y. J.; Hearon K.; Wilson T. S.; Maitland D. J. The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams. Smart Mater. Struct., 2011, 20, 085010. doi:10.1088/0964-1726/20/8/085010http://dx.doi.org/10.1088/0964-1726/20/8/085010
Sanches A. O.; Ricco L. H. S.; Malmonge L. F.; da Silva M. J.; Sakamoto W. K.; Malmonge J. A. Influence of cellulose nanofibrils on soft and hard segments of polyurethane/cellulose nanocomposites and effect of humidity on their mechanical properties. Polym. Test., 2014, 40, 99-105. doi:10.1016/j.polymertesting.2014.08.013http://dx.doi.org/10.1016/j.polymertesting.2014.08.013
Moreland J. C.; Wilkes G. L.; Turner R. B. Viscoelastic behavior of flexible slabstock polyurethane foams-dependence on temperature and relative-humidity. 1. Tensile and compression stress (load) relaxation. J. Appl. Polym. Sci., 1994, 52, 549-568. doi:10.1002/app.1994.070520411http://dx.doi.org/10.1002/app.1994.070520411
张凡, 张一帆, 徐进, 张瑞杰, 孙宝龙, 陈建港, 张慧莉. 浇注型聚氨酯弹性体水热老化性能及使用寿命研究. 水利与建筑工程学报, 2022, 20, 114-119. doi:10.3969/j.issn.1672-1144.2022.01.018http://dx.doi.org/10.3969/j.issn.1672-1144.2022.01.018
Yi Y.; Sun Y. Y.; Wang L. M.; Xiao P. Impacts of moisture absorption on electrical properties of rigid polyurethane foam for composite post insulator of uhvdc transmission line. Int. J. Electr. Power Energy Syst., 2021, 131, 107098. doi:10.1016/j.ijepes.2021.107098http://dx.doi.org/10.1016/j.ijepes.2021.107098
Chen K.; Tian Q.; Tian C.; Yan G.; Cao F.; Liang S.; Wang X. Mechanical reinforcement in thermoplastic polyurethane nanocomposite incorporated with polydopamine functionalized graphene nanoplatelet. Ind. Eng. Chem. Res., 2017, 56, 11827-11838. doi:10.1021/acs.iecr.7b03218http://dx.doi.org/10.1021/acs.iecr.7b03218
Chen K. P.; Zhang H. B.; Tian Q.; Liu W.; Almasy L.; Wang X. L.; Zhao X. L. Molecular dynamics, microstructures and mechanical properties of segmented polyurethane elastomers under gamma irradiation. Polym. Degrad. Stabil., 2021, 187, 109539. doi:10.1016/j.polymdegradstab.2021.109539http://dx.doi.org/10.1016/j.polymdegradstab.2021.109539
Starkova O.; Chandrasekaran S.; Schnoor T.; Sevcenko J.; Schulte K. Anomalous water diffusion in epoxy/carbon nanoparticle composites. Polym. Degrad. Stabil., 2019, 164, 127-135. doi:10.1016/j.polymdegradstab.2019.04.010http://dx.doi.org/10.1016/j.polymdegradstab.2019.04.010
回丽, 王勇刚, 许良, 马少华, 张旭, 费昺强. 考虑水浸温度影响的复合材料吸湿动力学模型. 材料工程, 2016, 44, 83-87. doi:10.11868/j.issn.1001-4381.2016.11.014http://dx.doi.org/10.11868/j.issn.1001-4381.2016.11.014
Sugiman S.; Salman S.; Anshari B. Hydrothermal ageing of hydrophobic nano-calcium carbonate/epoxy nanocomposites. Polym. Degrad. Stabil., 2021, 191, 109671. doi:10.1016/j.polymdegradstab.2021.109671http://dx.doi.org/10.1016/j.polymdegradstab.2021.109671
Chen T. K.; Shieh T. S.; Chui J. Y. Studies on the first DSC endotherm of polyurethane hard segment based on 4,4'-diphenylmethane diisocyanate and 1,4-butanediol. Macromolecules, 1998, 31, 1312-1320. doi:10.1021/ma970913mhttp://dx.doi.org/10.1021/ma970913m
Li Y. J.; Gao T.; Liu J.; Linliu K.; Desper C. R.; Chu B. Multiphase structure of a segmented polyurethane-effects of temperature and annealing. Macromolecules, 1992, 25, 7365-7372. doi:10.1021/ma00052a045http://dx.doi.org/10.1021/ma00052a045
Sui T.; Salvati E.; Zhang H.; Dolbnya I. P.; Korsunsky A. M. Multiscale synchrotron scattering studies of the temperatur-dependent changes in the structure and deformation response of a thermoplastic polyurethane elastomer. Mater. Today Adv., 2019, 4, 100024. doi:10.1016/j.mtadv.2019.100024http://dx.doi.org/10.1016/j.mtadv.2019.100024
Chen G.; Wei M.; Chen J.; Huang J.; Dufresne A.; Chang P. R. Simultaneous reinforcing and toughening: New nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals. Polymer, 2008, 49, 1860-1870. doi:10.1016/j.polymer.2008.02.020http://dx.doi.org/10.1016/j.polymer.2008.02.020
Yeh F.; Hsiao B. S.; Sauer B. B.; Michel S.; Siesler H. W. In-situ studies of structure development during deformation of a segmented poly(urethane-urea) elastomer. Macromolecules, 2003, 36, 1940-1954. doi:10.1021/ma0214456http://dx.doi.org/10.1021/ma0214456
Chaffin K. A.; Buckalew A. J.; Schley J. L.; Chen X. J.; Jolly M.; Alkatout J. A.; Miller J. P.; Untereker D. F.; Hillmyer M. A.; Bates F. S. Influence of water on the structure and properties of PDMS-containing multiblock polyurethanes. Macromolecules, 2012, 45, 9110-9120. doi:10.1021/ma301965yhttp://dx.doi.org/10.1021/ma301965y
0
Views
91
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution