浏览全部资源
扫码关注微信
1.中国科学院化学研究所 北京分子科学国家研究中心 高分子物理与化学国家重点实验室 北京 100190
2.中国科学院大学 北京 100049
3.Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003
Published:20 February 2023,
Published Online:30 September 2022,
Received:24 June 2022,
Accepted:01 August 2022
扫 描 看 全 文
贾迪,Murugappan Muthukumar.聚电解质链在中等受限凝胶网络中的“受挫”动力学[J].高分子学报,2023,54(02):151-165.
Jia Di,Muthukumar Murugappan.Dynamics of Charged Macromolecules Under Confinement[J].ACTA POLYMERICA SINICA,2023,54(02):151-165.
贾迪,Murugappan Muthukumar.聚电解质链在中等受限凝胶网络中的“受挫”动力学[J].高分子学报,2023,54(02):151-165. DOI: 10.11777/j.issn1000-3304.2022.22236.
Jia Di,Muthukumar Murugappan.Dynamics of Charged Macromolecules Under Confinement[J].ACTA POLYMERICA SINICA,2023,54(02):151-165. DOI: 10.11777/j.issn1000-3304.2022.22236.
带电大分子在拥堵受限水环境中的运动对于许多生命过程以及生物大分子的运输与功能至关重要. 以往人们认为处于受限环境下的高分子链都能进行自由扩散运动,且遵从爱因斯坦扩散方程. 即使在最强烈的受限环境下,高分子链仍能进行一维无规扩散运动,其动力学符合管道模型. 我们通过实验结合理论,设计凝胶网络尺寸与高分子链尺寸的比例来调控分子链受限环境的强弱,首次发现了大分子在中等受限环境下违背了爱因斯坦扩散方程,高分子整链是不能自由扩散运动的,但是一条链内的局部链段可以在每个凝胶网格内做多级局部松弛运动. 其本质是高分子整链的质心运动需要其同时克服多个熵垒,从而实现一条高分子链在所有熵阱内的链段可以同时朝着一个方向做协同运动,而这在实验的观测时间尺度内几乎是不可能实现的,因此高分子链就被“困住”,形成一种能长期存在的非扩散型的亚稳态,我们将这一新型动力学定义为非扩散型拓扑动力学. 本文首先对“受限环境”——带电水凝胶的物理性质进行介绍,第二部分介绍了带电大分子在浓溶液中的耦合动力学,最后介绍带电大分子在受限环境下的非扩散型拓扑动力学,包括由熵驱动的和由焓驱动的非扩散型动力学.
Movement of large electrically charged macromolecules trapped inside spatially restrictive aqueous media is a ubiquitous phenomenon
underlying many natural living processes and technologies focused on separation science and controllable delivery of macromolecular cargos. In this broad context of general significance
we have developed a conceptual framework towards a fundamental understanding of the molecular mechanisms of how large macromolecules move around in crowded environments. Our conceptual development
based on a combination of experiments and theory
addresses the confluence of conformational fluctuations of the guest charged macromolecule being trapped and the host charged matrix (modelled using a hydrogel)
structure and charge decoration of the host
long-ranged electrostatic interactions and van der Waals-type interactions in the composite system
and self-consistent coupling of the dynamics of all moving components (small electrolyte ions and large macroions) in the system. These advances are summarized in this review. Briefly
there are three components
each with tantalizing results. First
the dynamics of elasticity of the host charged gel are quantified in terms of shear modulus and bulk modulus
using dynamic light scattering measurements and modified Flory-Dusek-Patterson-Tanaka theory by accounting for electrostatics. Second
we show that a dilute solution of charged macromolecules exhibits the "ordinary-extraordinary transition" in the cooperative diffusion coefficient of the macromolecule. In the "ordinary" mode
the diffusion coefficient of a very large macromolecule can be as high as that of a small metallic ion. We attribute this strange effect to the coupling of the dynamics of the charged macromolecule and that of its dissociated counterions. The "extraordinary" mode arises from clustering of identically charged macromolecules induced by dipolar forces from ion-pairs formed by condensed counterions on the macromolecules. In the presence of added small molecular electrolyte
we find that an additional mode emerges due to the additional presence of the co-ions in the solution. Third
when the macromolecule is trapped inside the host hydrogel
we succinctly summarize the features of our discovery of a new state of polymer dynamics
namely the topologically frustrated dynamical state. In this state
which occurs at intermediate confinements arising from the host
the chain does not diffuse defying the Einstein's law of diffusion
due to the emergence of extreme metastability from freezing of chain's conformational entropy. This novel effect offers a diverse set of opportunities to controllably release macromolecular cargos using hydrogel-like host matrices as well as to build molecular machines that depend on memory associated with metastability
聚电解质非扩散性拓扑动力学熵位垒受限环境带电凝胶网络
PolyelectrolytesTopologically frustrated dynamicsEntropic barrierConfinementCharged gels
Ogston A. G.; Preston B. N.; Wells J. D.; Snowden J. M. On the transport of compact particles through solutions of chain-polymers. Proc. R. Soc. Lond. A, 1973, 333, 297-316. doi:10.1098/rspa.1973.0064http://dx.doi.org/10.1098/rspa.1973.0064
Rahalkar A.; Muthukumar M. Diffusion of polyelectrolytes in polyelectrolyte gels. Macromolecules, 2017, 50, 8158-8168. doi:10.1021/acs.macromol.7b01310http://dx.doi.org/10.1021/acs.macromol.7b01310
Muthukumar M.; Baumgäertner A. Effects of entropic barriers on polymer dynamics. Macromolecules, 1989, 22, 1937-1941. doi:10.1021/ma00194a070http://dx.doi.org/10.1021/ma00194a070
Muthukumar M. Entropic barrier model for polymer diffusion in concentrated polymer solutions and random media. J. Non-Cryst. Solids, 1991, 131-133, 654-666. doi:10.1016/0022-3093(91)90664-Rhttp://dx.doi.org/10.1016/0022-3093(91)90664-R
Edwards S. F. The statistical mechanics of polymerized material. Proc. Phys. Soc., 1967, 92, 9-16. doi:10.1088/0370-1328/92/1/303http://dx.doi.org/10.1088/0370-1328/92/1/303
Edwards S. F. Statistical mechanics with topological constraints: I. Proc. Phys. Soc., 1967, 91, 513-519. doi:10.1088/0370-1328/91/3/301http://dx.doi.org/10.1088/0370-1328/91/3/301
de Gennes P. G. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys., 1971, 55, 572-579. doi:10.1063/1.1675789http://dx.doi.org/10.1063/1.1675789
Easwar N. Diffusion of linear polystyrene in controlled pore glasses. Comparison of experimental data with a theoretical model of entropic barriers. Macromolecules, 1989, 22, 3492-3494. doi:10.1021/ma00198a049http://dx.doi.org/10.1021/ma00198a049
Reina J. C.; Bansil R.; Koňák C. Dynamics of probe particles in polymer solutions and gels. Polymer, 1990, 31, 1038-1044. doi:10.1016/0032-3861(90)90250-3http://dx.doi.org/10.1016/0032-3861(90)90250-3
Guo Y. H.; Langley K. H.; Karasz F. E. Hindered diffusion of polystyrene in controlled pore glasses. Macromolecules, 1990, 23, 2022-2027. doi:10.1021/ma00209a024http://dx.doi.org/10.1021/ma00209a024
Lodge T. P.; Rotstein N. A. Tracer diffusion of linear and star polymers in entangled solutions and gels. J. Non-Cryst. Solids, 1991, 131-133, 671-675.
Pajevic S.; Bansil R.; Konak C. Diffusion of linear polymer chains in gels. J. Non-Cryst. Solids, 1991, 131-133, 630-634.
Pajevic S.; Bansil R.; Konak Č. Diffusion of linear polymer chains in methyl methacrylate gels. Macromolecules, 1993, 26, 305-312. doi:10.1021/ma00054a009http://dx.doi.org/10.1021/ma00054a009
Slater G. W.; Wu, S. Y. Reptation, entropic trapping, percolation, and rouse dynamics of polymers in “random” environments. Phys. Rev. Lett., 1995, 75, 164-167. doi:10.1103/physrevlett.75.164http://dx.doi.org/10.1103/physrevlett.75.164
Rotstein N. A.; Lodge T. P. Tracer diffusion of linear polystyrenes in poly(vinyl methyl ether) gels. Macromolecules, 1992, 25, 1316-1325. doi:10.1021/ma00030a018http://dx.doi.org/10.1021/ma00030a018
Fatin-Rouge N.; Wilkinson K. J.; Buffle J. Combining small angle neutron scattering (SANS) and fluorescence correlation spectroscopy (FCS) measurements to relate diffusion in agarose gels to structure. J. Phys. Chem. B, 2006, 110, 20133-20142. doi:10.1021/jp060362ehttp://dx.doi.org/10.1021/jp060362e
Shibayama M.; Isaka Y.; Shiwa Y. Dynamics of probe particles in polymer solutions and gels. Macromolecules, 1999, 32, 7086-7092. doi:10.1021/ma990414ghttp://dx.doi.org/10.1021/ma990414g
Johnson E. M.; Berk D. A.; Jain R. K.; Deen W. M. Hindered diffusion in agarose gels: test of effective medium model. Biophys. J., 1996, 70, 1017-1023. doi:10.1016/s0006-3495(96)79645-5http://dx.doi.org/10.1016/s0006-3495(96)79645-5
Štěpánek P.; Brown W. Multiple relaxations of concentration fluctuations in entangled polymer solutions. Macromolecules, 1998, 31, 1889-1897. doi:10.1021/ma970458uhttp://dx.doi.org/10.1021/ma970458u
Bell N. A. W.; Chen K. K.; Ghosal S.; Ricci M.; Keyser U. F. Asymmetric dynamics of DNA entering and exiting a strongly confining nanopore. Nat. Commun., 2017, 8, 380. doi:10.1038/s41467-017-00423-9http://dx.doi.org/10.1038/s41467-017-00423-9
Basak S.; Chattopadhyay K. Fluorescence correlation spectroscopy study on the effects of the shape and size of a protein on its diffusion inside a crowded environment. Langmuir, 2013, 29, 14709-14717. doi:10.1021/la4031987http://dx.doi.org/10.1021/la4031987
Srivastava S.; Andreev M.; Levi A. E.; Goldfeld D. J.; Mao J.; Heller W. T.; Prabhu V. M.; de Pablo J. J.; Tirrell M. V. Gel phase formation in dilute triblock copolyelectrolyte complexes. Nat. Commun., 2017, 8, 14131. doi:10.1038/ncomms14131http://dx.doi.org/10.1038/ncomms14131
Yuan G. C.; Wang X. H.; Han C. C.; Wu C. Reexamination of slow dynamics in semidilute solutions: from correlated concentration fluctuation to collective diffusion. Macromolecules, 2006, 39, 3642-3647. doi:10.1021/ma060060ahttp://dx.doi.org/10.1021/ma060060a
Jia D.; Muthukumar M. Topologically frustrated dynamics of crowded charged macromolecules in charged hydrogels. Nat. Commun., 2018, 9, 2248. doi:10.1038/s41467-018-04661-3http://dx.doi.org/10.1038/s41467-018-04661-3
Jia D.; Muthukumar M. Theory of charged gels: swelling, elasticity, and dynamics. Gels, 2021, 7, 49. doi:10.3390/gels7020049http://dx.doi.org/10.3390/gels7020049
Jia D.; Muthukumar M. Interplay between microscopic and macroscopic properties of charged hydrogels. Macromolecules, 2020, 53, 90-101. doi:10.1021/acs.macromol.9b01824http://dx.doi.org/10.1021/acs.macromol.9b01824
贾迪, 杨京法, 程贺, 韩志超. 激光光散射测量荧光/磷光体系溶液结构的原理和方法. 高分子学报, 2015, (5), 564-570. doi:10.11777/j.issn1000-3304.2015.14371http://dx.doi.org/10.11777/j.issn1000-3304.2015.14371
叶晓东, 周科进, 吴奇. 高分子研究中的一个知识问题——柔性链“从线团到小球”的构象变化. 高分子学报, 2017, (9), 1389-1399. doi:10.11777/j.issn1000-3304.2017.16362http://dx.doi.org/10.11777/j.issn1000-3304.2017.16362
Han C. C.; Akcasu A. Z. Scattering and Dynamics of Polymers: Seeking Order in Disordered Systems. Hoboken: John Wiley & Sons Ltd., 2011. doi:10.1002/9780470824849http://dx.doi.org/10.1002/9780470824849
Barrat, J L.; Joanny J F.; Pincus P. On the scattering properties of polyelectrolyte gels. J. Phys. II France, 1992, 2, 1531-1544. doi:10.1051/jp2:1992219http://dx.doi.org/10.1051/jp2:1992219
Skouri R.; Schosseler F.; Munch J. P.; Candau S. J. Swelling and elastic properties of polyelectrolyte gels. Macromolecules, 1995, 28, 197-210. doi:10.1021/ma00105a026http://dx.doi.org/10.1021/ma00105a026
Joosten J. G. H.; McCarthy J. L.; Pusey P. N. Dynamic and static light scattering by aqueous polyacrylamide gels. Macromolecules, 1991, 24, 6690-6699. doi:10.1021/ma00025a021http://dx.doi.org/10.1021/ma00025a021
Tanaka T.; Hocker L. O.; Benedek G. B. J. Spectrum of light scattered from a viscoelastic gel. Chem. Phys., 1973, 59, 5151-5159. doi:10.1063/1.1680734http://dx.doi.org/10.1063/1.1680734
Schosseler F.; Ilmain F.; Candau S. J. Structure and properties of partially neutralized poly(acrylic acid) gels. Macromolecules, 1991, 24, 225-234. doi:10.1021/ma00001a035http://dx.doi.org/10.1021/ma00001a035
Råsmark; P. J.; Koňák Č.; Štěpánek P.; Elvingson C. Fast internal dynamics in polyelectrolyte gels measured by dynamic light scattering. Polym. Bull., 2005, 54, 335-342. doi:10.1007/s00289-005-0398-xhttp://dx.doi.org/10.1007/s00289-005-0398-x
Norisuye T.; Tran-Cong-Miyata Q.; Shibayama M. Dynamic inhomogeneities in polymer gels investigated by dynamic light scattering. Macromolecules, 2004, 37, 2944-2953. doi:10.1021/ma035246dhttp://dx.doi.org/10.1021/ma035246d
Xue J. Z.; Pine D. J.; Milner S. T.; Wu X. L.; Chaikin P. M. Nonergodicity and light scattering from polymer gels. Phys. Rev. A, 1992, 46, 6550-6563. doi:10.1103/physreva.46.6550http://dx.doi.org/10.1103/physreva.46.6550
Schosseler F, Moussaid A, Munch J P, Candau S J. Weakly charged polyelectrolyte gels: temperature and salt effects on the statics and the dynamics. J. Phys. II France, 1991, 1, 1197-1219. doi:10.1051/jp2:1991128http://dx.doi.org/10.1051/jp2:1991128
Shibayama M.; Fujikawa Y.; Nomura S. Dynamic light scattering study of poly(N-isopropylacrylamide-co-acrylic acid) gels. Macromolecules, 1996, 29, 6535-6540. doi:10.1021/ma960320whttp://dx.doi.org/10.1021/ma960320w
Morozova S.; Muthukumar M. Elasticity at swelling equilibrium of ultrasoft polyelectrolyte gels: comparisons of theory and experiments. Macromolecules, 2017, 50, 2456-2466. doi:10.1021/acs.macromol.6b02656http://dx.doi.org/10.1021/acs.macromol.6b02656
洪伟, 许国智, 孙尉翔, 童真. 用探针粒子示踪微流变法测量明胶的动态不均匀性. 高分子学报, 2017, (9), 1488-1496. doi:10.11777/j.issn1000-3304.2017.17071http://dx.doi.org/10.11777/j.issn1000-3304.2017.17071
周超, 杨京法, 赵江. 荧光关联光谱在高分子单链研究中的应用. 高分子学报, 2021, 52, 321-334. doi:10.11777/j.issn1000-3304.2020.20238http://dx.doi.org/10.11777/j.issn1000-3304.2020.20238
Muthukumar M. Ordinary-extraordinary transition in dynamics of solutions of charged macromolecules. Proc. Natl. Acad. Sci. USA., 2016, 113, 12627-12632. doi:10.1073/pnas.1612249113http://dx.doi.org/10.1073/pnas.1612249113
Förster S.; Schmidt M.; Antonietti M. Static and dynamic light scattering by aqueous polyelectrolyte solutions: effect of molecular weight, charge density and added salt. Polymer, 1990, 31, 781-792. doi:10.1016/0032-3861(90)90036-xhttp://dx.doi.org/10.1016/0032-3861(90)90036-x
Sedlák M.; Amis E. J. Dynamics of moderately concentrated salt-free polyelectrolyte solutions: molecular weight dependence. J. Chem. Phys., 1992, 96, 817-825. doi:10.1063/1.462467http://dx.doi.org/10.1063/1.462467
Jia D.; Muthukumar M. Effect of salt on the ordinary-extraordinary transition in solutions of charged macromolecules. J. Am. Chem. Soc., 2019, 141, 5886-5896. doi:10.1021/jacs.9b00562http://dx.doi.org/10.1021/jacs.9b00562
Muthukumar M. Collective dynamics of semidilute polyelectrolyte solutions with salt. J. Polym. Sci., PartB: Polym. Phys., 2019, 57, 1263-1269. doi:10.1002/polb.24839http://dx.doi.org/10.1002/polb.24839
Jia D.; Tsuji Y.; Shibayama M.; Muthukumar M. Topologically frustrated dynamics in an uncharged Tetra-PEG gel. bioRxiv, 2022, Doi: 10.1101/2022.02.23.481633.http://dx.doi.org/10.1101/2022.02.23.481633.
Jia D.; Muthukumar M. Electrostatically driven topological freezing of polymer diffusion at intermediate confinements. Phys. Rev. Lett., 2021, 126, 057802. doi:10.1103/physrevlett.126.057802http://dx.doi.org/10.1103/physrevlett.126.057802
戴晓彬, 张轩钰, 高丽娟, 燕立唐. 强熵效应与大分子体系的熵调控. 高分子学报, 2021, 52, 1076-1099. doi:10.11777/j.issn1000-3304.2021.21044http://dx.doi.org/10.11777/j.issn1000-3304.2021.21044
0
Views
118
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution