浏览全部资源
扫码关注微信
1.福建师范大学,化学与材料学院,福州 350007
2.福建师范大学,福建省高分子材料重点实验室,福州 350007
3.福建师范大学,生命科学学院,福州 350007
Hai-qing Liu, E-mail: haiqingliu@fjnu.edu.cn
Published:20 March 2023,
Published Online:17 October 2022,
Received:27 July 2022,
Accepted:09 September 2022
扫 描 看 全 文
梁子毅,黄鸿键,倪鹏等.贻贝黏附蛋白启发的甲壳素纳米晶须增强湿态黏附水凝胶的研究[J].高分子学报,2023,54(03):365-380.
Liang Zi-yi,Huang Hong-jian,Ni Peng,et al.Mussel Adhesive Protein Inspired Chitin Nanowiskers Enhanced Adhesive Hydrogels for Wet Adhesion[J].ACTA POLYMERICA SINICA,2023,54(03):365-380.
梁子毅,黄鸿键,倪鹏等.贻贝黏附蛋白启发的甲壳素纳米晶须增强湿态黏附水凝胶的研究[J].高分子学报,2023,54(03):365-380. DOI: 10.11777/j.issn1000-3304.2022.22254.
Liang Zi-yi,Huang Hong-jian,Ni Peng,et al.Mussel Adhesive Protein Inspired Chitin Nanowiskers Enhanced Adhesive Hydrogels for Wet Adhesion[J].ACTA POLYMERICA SINICA,2023,54(03):365-380. DOI: 10.11777/j.issn1000-3304.2022.22254.
报道了一种力学性能优良,湿态生物组织黏附能高的黏附水凝胶. 该凝胶由丙烯酸、甲基丙烯酸羟乙酯和3-三烯十五烷基-1
2-邻苯二酚共聚,与壳聚糖复合、并由甲壳素纳米晶须增强而成. 该凝胶网络含有可逆和不可逆交联作用. 其中可逆物理作用包括阴阳离子聚电解质静电吸引、烷基链疏水缔合、苯环
π
-
π
堆积、阳离子-
π
、氢键和拓扑纠缠. 由这些物理键形成的次级网络的可逆形成/破坏为水凝胶形变提供了能量耗散,从而提升了其断裂韧性. 另一方面,水凝胶的快速吸水能力破坏了湿润基体表面的水合层,使凝胶表面基团能与组织表面形成物理键和化学键的界面相互作用,从而共同促进水凝胶与湿态组织的强韧黏附. 水凝胶的断裂强度可达276.4 kPa,对湿润猪皮的界面黏附韧性可达831 J/m
2
,在水下对猪皮的界面黏附韧性约达236 J/m
2
,猪皮和猪肝伤口闭合强度分别可达26.2和16.5 kPa. 该黏附凝胶适合作为免缝合的伤口闭合黏胶材料.
Aiming at the challenges of low mechanical adhesion and weak wet adhesion potential faced by the traditional adhesive hydrogels
a new design strategy for adhesive hydrogel is reported in this study. Inspired by the mussel adhesive protein and the synergistic effect between cations and catechols in wet adhesion
PAHU-CS-CNF hydrogel is synthesized
via
one-pot method copolymerizing acrylic acid (AA)
hydroxyethyl methacrylate (HEMA) and 3-trienopentadecyl-1
2-catechol (UH) with protonated chitosan (CS) and chitin nanowiskers (CNF) in aqueous solution. Since the reversible physical interactions include electrostatic attraction
hydrophobic association among alkyl chains
π
-
π
stacking of benzene rings
cation-
π
hydrogen bonding and topological entanglement
the secondary networks formed by these physical bonds provide good energy dissipation for the hydrogel deformation. The synergistic effects of cations
catechols
and the water absorbability of PAHU-CS-CNF hydrogel that destructs the hydration layer on the contact interface
enable the hydrogel to form solid interfacial physical and chemical bonds interactions with wet porcine skin surface. These unique structures and mechanisms of PAHU-CS-CNF hydrogel lead to good mechanical properties (fracture strength ~276.4 kPa
toughness ~633 kJ/m
3
)
excellent adhesion properties to porcine skin (interfacial toughness in wet state ~831 J/m
2
interfacial toughness underwater ~236 J/m
2
wound closure adhesion strength on skin ~26.2 kPa
wound closure adhesion strength on liver ~16.5 kPa)
and the hydrogel is not easy to adhere to skin tissue in the presence of serum
given potential to prevent the wound tissue from secondary damage. The hydrogel has a great selective adhesion on biological tissue over nonbiological substrates. The PAHU-CS-CNF adhesive hydrogel may be potentially applied in the field of sutureless wound closure.
贻贝黏附蛋白水凝胶湿态黏附黏附韧性
Mussel adhesion proteinHydrogelWet state adhesionAdhesion toughness
Shanbhag S. S.; Chodosh J.; Saeed H. N. Sutureless amniotic membrane transplantation with cyanoacrylate glue for acute Stevens-Johnson syndrome/toxic epidermal necrolysis. Ocul. Surf., 2019, 17(3), 560-564. doi:10.1016/j.jtos.2019.03.001http://dx.doi.org/10.1016/j.jtos.2019.03.001
Sedo J.; Saiz-Poseu J.; Busque F.; Ruiz-Molina D. Catechol-based biomimetic functional materials. Adv. Mater., 2013, 25(5), 653-701. doi:10.1002/adma.201202343http://dx.doi.org/10.1002/adma.201202343
Wang R.; Li J. Z.; Chen W.; Xu T. T.; Yun S. F.; Xu Z.; Xu Z. Q.; Sato T.; Chi B.; Xu H. A biomimetic mussel-inspired ε-poly-l-lysine hydrogel with robust tissue-anchor and anti-infection capacity. Adv. Funct. Mater., 2017, 27(8), 1604894. doi:10.1002/adfm.201604894http://dx.doi.org/10.1002/adfm.201604894
Fischer L.; Strzelczyk A. K.; Wedler N.; Kropf C.; Schmidt S.; Hartmann L. Sequence-defined positioning of amine and amide residues to control catechol driven wet adhesion. Chem. Sci., 2020, 11(36), 9919-9924. doi:10.1039/d0sc03457fhttp://dx.doi.org/10.1039/d0sc03457f
Mu Y. B.; Mu P. Z.; Wu X.; Wan X. B. The two facets of the synergic effect of amine cation and catechol on the adhesion of catechol in underwater conditions. Appl. Surf. Sci., 2020, 530, 146973. doi:10.1016/j.apsusc.2020.146973http://dx.doi.org/10.1016/j.apsusc.2020.146973
武彤, 何柳, 郑丹丹, 吴小玲, 罗伟昂, 袁丛辉, 戴李宗. 动态硼酸酯键管控邻苯二酚基团与功能黏附性高分子设计. 高分子学报, 2022, 53(7), 796-811. doi:10.11777/j.issn1000-3304.2022.22061http://dx.doi.org/10.11777/j.issn1000-3304.2022.22061
Fan X. M.; Fang Y.; Zhou W. K.; Yan L. Y.; Xu Y. H.; Zhu H.; Liu H. Q. Mussel foot protein inspired tough tissue-selective underwater adhesive hydrogel. Mater. Horiz., 2021, 8(3), 997-1007. doi:10.1039/d0mh01231ahttp://dx.doi.org/10.1039/d0mh01231a
Meredith H.; Jenkins C.; Wilker J. Enhancing the adhesion of a biomimetic polymer yields performance rivaling commercial glues. Adv. Funct. Mater., 2014, 24(21), 3259-3267. doi:10.1002/adfm.201303536http://dx.doi.org/10.1002/adfm.201303536
Nicolay R.; Kamada J.; van Wassen A.; Matyjaszewski K. Responsive gels based on a dynamic covalent trithiocarbonate cross-linker. Macromolecules, 2010, 43(9), 4355-4361. doi:10.1021/ma100378rhttp://dx.doi.org/10.1021/ma100378r
Attalla R.; Ling C. S. N.; Selvaganapathy P. R. Silicon carbide nanoparticles as an effective bioadhesive to bond collagen containing composite gel layers for tissue engineering applications. Adv. Healthc. Mater., 2018, 7(5), 1701385. doi:10.1002/adhm.201701385http://dx.doi.org/10.1002/adhm.201701385
Zeng J. B.; He Y. S.; Li S. L.; Wang Y. Z. Chitin whiskers: an overview. Biomacromolecules, 2012, 13(1), 1-11. doi:10.1021/bm201564ahttp://dx.doi.org/10.1021/bm201564a
Ou X. F.; Cai J. B.; Tian J. H.; Luo B. H.; Liu M. X. Superamphiphobic surfaces with self-cleaning and antifouling properties by functionalized chitin nanocrystals. ACS Sustainable Chem. Eng., 2020, 8(17), 6690-6699. doi:10.1021/acssuschemeng.0c00340http://dx.doi.org/10.1021/acssuschemeng.0c00340
Fang Y.; Xu Y. H.; Wang Z. G.; Zhou W. K.; Yan L. Y.; Fan X. M.; Liu H. Q. 3D porous chitin sponge with high absorbency, rapid shape recovery, and excellent antibacterial activities for noncompressible wound. Chem. Eng. J., 2020, 388(5), 124169. doi:10.1016/j.cej.2020.124169http://dx.doi.org/10.1016/j.cej.2020.124169
Rolandi M.; Rolandi R. Self-assembled chitin nanofibers and applications. Adv. Colloid Interface Sci., 2014, 207, 216-222. doi:10.1016/j.cis.2014.01.019http://dx.doi.org/10.1016/j.cis.2014.01.019
He H. Y.; Zhou W. K.; Gao J.; Wang F.; Wang S. B.; Fang Y.; Gao Y.; Chen W.; Zhang W.; Weng Y. X.; Wang Z. C.; Liu H. Q. Efficient, biosafe and tissue adhesive hemostatic cotton gauze with controlled balance of hydrophilicity and hydrophobicity. Nat. Commun., 2022, 13, 552. doi:10.1038/s41467-022-28209-8http://dx.doi.org/10.1038/s41467-022-28209-8
贾之慎, 李秀玲. 酸碱电导滴定法测定壳聚糖脱乙酰度. 分析化学, 2002, 30(7), 846-848. doi:10.3321/j.issn:0253-3820.2002.07.021http://dx.doi.org/10.3321/j.issn:0253-3820.2002.07.021
Wei W.; Tan Y.; Martinez Rodriguez N. R.; Yu J.; Israelachvili J. N.; Waite J. H. A mussel-derived one component adhesive coacervate. Acta Biomater., 2014, 10(4), 1663-1670. doi:10.1016/j.actbio.2013.09.007http://dx.doi.org/10.1016/j.actbio.2013.09.007
Hofman A. H.; van Hees I. A.; Yang J.; Kamperman M. Bioinspired underwater adhesives by using the supramolecular toolbox. Adv. Mater., 2018, 30(19), e1704640. doi:10.1002/adma.201704640http://dx.doi.org/10.1002/adma.201704640
Lopes-da-Silva J. A. Thermorheological complex behaviour of maltosyl-chitosan derivatives in aqueous solution. React. Funct. Polym., 2012, 72(9), 657-666. doi:10.1016/j.reactfunctpolym.2012.06.011http://dx.doi.org/10.1016/j.reactfunctpolym.2012.06.011
CChoi Y.; Cho D. H.; Kim S.; Kim H. J.; Park T. J.; Kim K. B.; Park Y. Synergistic enhancement of hydrogel adhesion via tough chemical bonding and physical entanglements. Polym. Test., 2022, 107, 107482. doi:10.1016/j.polymertesting.2022.107482http://dx.doi.org/10.1016/j.polymertesting.2022.107482
Su Q.; Duan L. J.; Zou M. F.; Chen X. T.; Gao G. H. The tough allograft adhesive behavior between polyacrylamide and poly(acrylic acid) hydrophobic association hydrogels. Mater. Chem. Phys., 2017, 193, 57-62. doi:10.1016/j.matchemphys.2017.02.018http://dx.doi.org/10.1016/j.matchemphys.2017.02.018
Dan U. The change in Gibbs free energy for hydrophobic association-derivation and evaluation by means of inverse temperature transitions. Chem. Phys. Lett., 2004, 399(1-3), 177-183. doi:10.1016/s0009-2614(04)01565-9http://dx.doi.org/10.1016/s0009-2614(04)01565-9
Qin L.; Xie F.; Jin X.; Liu M. H. Driving helical packing of a cyanine dye on dendron nanofiber: Gel-shrinkage-triggered chiral H-aggregation and enhanced enantiodiscrimination. Chem. Eur. J., 2015, 21(32), 11300-11305. doi:10.1002/chem.201500929http://dx.doi.org/10.1002/chem.201500929
Lu S. C.; Zhang X. H.; Tang Z. W.; Xiao H.; Zhang M.; Liu K.; Chen L. H.; Huang L. L.; Ni Y. H.; Wu H. Mussel-inspired blue-light-activated cellulose-based adhesive hydrogel with fast gelation, rapid haemostasis and antibacterial property for wound healing. Chem. Eng. J., 2021, 417(16), 129329. doi:10.1016/j.cej.2021.129329http://dx.doi.org/10.1016/j.cej.2021.129329
Wilker J. J. Positive charges and underwater adhesion. Science, 2015, 349(6248), 582-583. doi:10.1126/science.aac8174http://dx.doi.org/10.1126/science.aac8174
Maier G. P.; Rapp M. V.; Waite J. H.; Israelachvili J. N.; Butler A. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science, 2015, 349(6248), 628-632. doi:10.1126/science.aab0556http://dx.doi.org/10.1126/science.aab0556
Kim S.; Faghihnejad A.; Lee Y. J.; Jho Y.; Zeng H. B.; Hwang D. S. Cation-π interaction in DOPA-deficient mussel adhesive protein mfp-1. J. Mater. Chem. B, 2015, 3(5), 738-743. doi:10.1039/c4tb01646ghttp://dx.doi.org/10.1039/c4tb01646g
Xiang L.; Zhang J. W.; Wang W. D.; Gong L.; Zhang L.; Yan B.; Zeng H. B. Nanomechanics of π-cation-π interaction with implications for bio-inspired wet adhesion. Acta Biomater., 2020, 117(2), 294-301. doi:10.1016/j.actbio.2020.09.043http://dx.doi.org/10.1016/j.actbio.2020.09.043
Su Z.; Wang H.; Tian K. H.; Huang W. Q.; Xiao C.; Guo Y. L.; He J.; Tian X. Y. The combination of π-π interaction and covalent bonding can synergistically strengthen the flexible electrical insulating nanocomposites with well adhesive properties and thermal conductivity. Compos. Sci. Technol., 2018, 155, 1-10. doi:10.1016/j.compscitech.2017.09.018http://dx.doi.org/10.1016/j.compscitech.2017.09.018
Maier G. P.; Bernt C. M.; Butler A. Catechol oxidation: Considerations in the design of wet adhesive materials. Biomater. Sci., 2018, 6(2), 332-339. doi:10.1039/c7bm00884hhttp://dx.doi.org/10.1039/c7bm00884h
Zhang R.; Peng H. W.; Zhou T. X.; Yao Y.; Zhu X. D.; Bi B. W.; Zhang X.; Liu B. X.; Niu L. Y.; Wang W. Q. Constructing high performance hydrogels with strong underwater adhesion through a “mussel feet-rock” inspired strategy. ACS Appl. Polym. Mater., 2019, 1(11), 2883-2889. doi:10.1021/acsapm.9b00590http://dx.doi.org/10.1021/acsapm.9b00590
Han Z. Y.; Zhou P.; Duan C. Y. Extremely stretchable, stable and antibacterial double network organogels based on hydrogen bonding interaction. Colloids Surf. A Physicochem. Eng. Aspects, 2020, 602, 125065. doi:10.1016/j.colsurfa.2020.125065http://dx.doi.org/10.1016/j.colsurfa.2020.125065
Chen C. C.; Yano H.; Li D. G.; Abe K. Preparation of high-strength α-chitin nanofiber-based hydrogels under mild conditions. Cellulose, 2015, 22(4), 2543-2550. doi:10.1007/s10570-015-0654-7http://dx.doi.org/10.1007/s10570-015-0654-7
Kawano A.; Sato K.; Yamamoto K.; Kadokawa J. I. Preparation of chitin nanofiber-reinforced xanthan gum hydrogels. J. Polym. Environ., 2019, 27(4), 671-677. doi:10.1007/s10924-019-01380-8http://dx.doi.org/10.1007/s10924-019-01380-8
Biedermann F.; Schneider H. J. Experimental binding energies in supramolecular complexes. Chem. Rev., 2016, 116(9), 5216-5300. doi:10.1021/acs.chemrev.5b00583http://dx.doi.org/10.1021/acs.chemrev.5b00583
Han L.; Yan L. W.; Wang K. F.; Fang L. M.; Zhang H. P.; Tang Y. H.; Ding Y. H.; Weng L. T.; Xu J. L.; Weng J.; Liu Y. J.; Ren F. Z.; Lu X. Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. NPG Asia Mater., 2017, 9(4), e372. doi:10.1038/am.2017.33http://dx.doi.org/10.1038/am.2017.33
Li Z. K.; Wang D. W.; Bai H. Y.; Zhang S. W.; Ma P. M.; Dong W. F. Photo-crosslinking strategy constructs adhesive, superabsorbent, and tough PVA-based hydrogel through controlling the balance of cohesion and adhesion. Macromol. Mater. Eng., 2020, 305(1), 1900623. doi:10.1002/mame.201900623http://dx.doi.org/10.1002/mame.201900623
Liu X.; Zhang Q.; Gao Z. J.; Hou R. B.; Gao G. H. Bioinspired adhesive hydrogel driven by adenine and thymine. ACS Appl. Mater. Interfaces, 2017, 9(20), 17645-17652. doi:10.1021/acsami.7b04832http://dx.doi.org/10.1021/acsami.7b04832
Chatterjee A.; Santra M.; Won N.; Kim S.; Kim J. K.; Kim S. B.; Ahn K. H. Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media. J. Am. Chem. Soc., 2009, 131(6), 2040-2041. doi:10.1021/ja807230chttp://dx.doi.org/10.1021/ja807230c
Wei W.; Petrone L.; Tan Y.; Cai H.; Israelachvili J. N.; Miserez A.; Waite J. H. An underwater surface-drying peptide inspired by a mussel adhesive protein. Adv. Funct. Mater., 2016, 26(20), 3496-3507. doi:10.1002/adfm.201600210http://dx.doi.org/10.1002/adfm.201600210
Kord Forooshani P.; Lee B. P. Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. J. Polym. Sci. Part A Polym. Chem., 2017, 55(1), 9-33. doi:10.1002/pola.28368http://dx.doi.org/10.1002/pola.28368
Liang Y. Q.; Li Z. L.; Huang Y.; Yu R.; Guo B. L. Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing. ACS Nano, 2021, 15(4), 7078-7093. doi:10.1021/acsnano.1c00204http://dx.doi.org/10.1021/acsnano.1c00204
Su X.; Luo Y.; Tian Z. L.; Yuan Z. Y.; Han Y. M.; Dong R. F.; Xu L.; Feng Y. T.; Liu X. Z.; Huang J. Y. Ctenophore-inspired hydrogels for efficient and repeatable underwater specific adhesion to biotic surfaces. Mater. Horiz., 2020, 7(10), 2651-2661. doi:10.1039/d0mh01344ghttp://dx.doi.org/10.1039/d0mh01344g
Liu H. Z.; Feng Y.; Cao X.; Luo B. H.; Liu M. X. Chitin nanocrystals as an eco-friendly and strong anisotropic adhesive. ACS Appl. Mater. Interfaces, 2021, 13(9), 11356-11368. doi:10.1021/acsami.1c02000http://dx.doi.org/10.1021/acsami.1c02000
Yuk H.; Zhang T.; Lin S. T.; Parada G. A.; Zhao X. H. Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater., 2016, 15(2), 190-196. doi:10.1038/nmat4463http://dx.doi.org/10.1038/nmat4463
Yuk H.; Varela C. E.; Nabzdyk C. S.; Mao X. Y.; Padera R. F.; Roche E. T.; Zhao X. H. Dry double-sided tape for adhesion of wet tissues and devices. Nature, 2019, 575(7781), 169-174. doi:10.1038/s41586-019-1710-5http://dx.doi.org/10.1038/s41586-019-1710-5
Gao Y.; Han X. Y.; Chen J. J.; Pan Y. D.; Yang M.; Lu L. H.; Yang J.; Suo Z. G.; Lu T. Q. Hydrogel-mesh composite for wound closure. Proc. Natl. Acad. Sci. USA, 2021, 118(28), e2103457118. doi:10.1073/pnas.2103457118http://dx.doi.org/10.1073/pnas.2103457118
Montazerian H.; Baidya A.; Haghniaz R.; Davoodi E.; Ahadian S.; Annabi N.; Khademhosseini A.; Weiss P. S. Stretchable and bioadhesive gelatin methacryloyl-based hydrogels enabled by in situ dopamine polymerization. ACS Appl. Mater. Interfaces, 2021, 13(34), 40290-40301. doi:10.1021/acsami.1c10048http://dx.doi.org/10.1021/acsami.1c10048
Mao Q.; Hoffmann O.; Yu K.; Lan G. Q.; Dai F. Y.; Shang S. M.; Xie R. Q. Self-contracting oxidized starch/gelatin hydrogel for noninvasive wound closure and wound healing. Mater. Des., 2020, 194, 108916. doi:10.1016/j.matdes.2020.108916http://dx.doi.org/10.1016/j.matdes.2020.108916
0
Views
112
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution