浏览全部资源
扫码关注微信
1.中国船舶重工集团公司第七二五研究所 洛阳 471023
2.北京化工大学 北京市新型高分子材料制备与加工重点实验室 北京 100029
Wei Cheng, E-mail: sanshi@725.com.cn
Yang-yang Gao, E-mail: gaoyy@mail.buct.edu.cn
Published:20 March 2023,
Published Online:14 October 2022,
Received:30 July 2022,
Accepted:13 September 2022
扫 描 看 全 文
程伟,王佰海,王雯霏等.温度与压力对聚氨酯弹性体黏弹性影响的分子模拟研究[J].高分子学报,2023,54(03):398-408.
Cheng Wei,Wang Bai-hai,Wang Wen-fei,et al.Molecular Dynamics Simulation on Effect of Temperature and Pressure on Viscoelasticity of Polyurethane Elastomers[J].ACTA POLYMERICA SINICA,2023,54(03):398-408.
程伟,王佰海,王雯霏等.温度与压力对聚氨酯弹性体黏弹性影响的分子模拟研究[J].高分子学报,2023,54(03):398-408. DOI: 10.11777/j.issn1000-3304.2022.22257.
Cheng Wei,Wang Bai-hai,Wang Wen-fei,et al.Molecular Dynamics Simulation on Effect of Temperature and Pressure on Viscoelasticity of Polyurethane Elastomers[J].ACTA POLYMERICA SINICA,2023,54(03):398-408. DOI: 10.11777/j.issn1000-3304.2022.22257.
采用粗粒度分子动力学模拟方法研究了温度与压力对聚氨酯弹性体黏弹性的影响. 结果显示,随着温度的上升,聚氨酯储能模量、损耗模量逐渐下降,而损耗因子逐渐上升. 而压力对聚氨酯黏弹性的影响与温度正好相反,且损耗因子与压力几乎无关. 随后采用相互作用能,相有序度参数和尺寸,约化相互作用能以及热交换能来揭示聚氨酯黏弹性的微观机理. 在剪切过程中,相结构主要发生了变形,进而产生了更多的界面. 同时随着温度上升或者压力下降,硬相和软相珠子间滑移变得容易,进而导致耗散能量逐渐下降.
In this work
the effect of temperature and pressure on the viscoelasticity of the polyurethane elastomers is investigated
via
a coarse-grained molecular dynamics simulation. It is found that the storage modulus and loss modulus of polyurethane gradually decrease with the increase of temperature while the loss factor rises. The effect of pressure on the viscoelastic properties of polyurethane is opposite to that of temperature. Moreover
the loss factor of polyurethane is nearly independent of pressure. Then
the interaction energy
the order parameter and size of phases
the reduced interaction energy and heat exchange energy are calculated to understand the microscopic mechanism of the polyurethane viscoelasticity. The results show that the phase structures are mainly deformed during the shearing process
which produces more interfaces. In addition
the slippage between hard phase and soft phase beads becomes easier at a higher temperature or a lower pressure
which gradually reduces the dissipated energy.
聚氨酯温度压力黏弹性分子动力学模拟
PolyurethaneTemperaturePressureViscoelasticityMolecular dynamics simulation
Kausar A. Emerging research trends in polyurethane/graphene nanocomposite: a review. Polym-Plast. Technol. Eng., 2017, 56(13), 1468-1486. doi:10.1080/03602559.2016.1277240http://dx.doi.org/10.1080/03602559.2016.1277240
Buckley C. P.; Prisacariu C.; Martin C. Elasticity and inelasticity of thermoplastic polyurethane elastomers: Sensitivity to chemical and physical structure. Polymer, 2010, 51(14), 3213-3224. doi:10.1016/j.polymer.2010.04.069http://dx.doi.org/10.1016/j.polymer.2010.04.069
Hu S. K.; He S. Y.; Wang Y. M.; Wu Y. W.; Shou T.; Yin D. X.; Mu G. Y.; Zhao X. Y.; Gao Y. Y.; Liu J.; Li F. Z.; Guo M. M.; Zhang L. Q. Self-repairable, recyclable and heat-resistant polyurethane for high-performance automobile tires. Nano Energy, 2022, 95, 107012. doi:10.1016/j.nanoen.2022.107012http://dx.doi.org/10.1016/j.nanoen.2022.107012
He M. Y.; Gu K.; Wang Y. L.; Li Z. Z.; Shen Z. P.; Liu S.; Wei J. X. Development of high-performance thermoplastic composites based on polyurethane and ground tire rubber by in-situ synthesis. Resour. Conserv. Recy., 2021, 173, 105713. doi:10.1016/j.resconrec.2021.105713http://dx.doi.org/10.1016/j.resconrec.2021.105713
Rao M. D. Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes. J. Sound Vib., 2003, 262(3), 457-474. doi:10.1016/s0022-460x(03)00106-8http://dx.doi.org/10.1016/s0022-460x(03)00106-8
Mouritz A. P.; Gellert E.; Burchill P.; Challis K. Review of advanced composite structures for naval ships and submarines. Compos. Struct., 2001, 53(1), 21-42. doi:10.11777/j.issn1000-3304.2015.14315http://dx.doi.org/10.11777/j.issn1000-3304.2015.14315
夏侯国论, 刘伟区, 谭建权, 王红蕾, 何导. 有机硅 /蒙脱土复合改性聚氨酯弹性体的制备和性能. 高分子学报, 2015, (4), 444-450. doi:10.11777/j.issn1000-3304.2015.14315http://dx.doi.org/10.11777/j.issn1000-3304.2015.14315
李仙会, 庞坤玮. PPDI型聚氨酯弹性体的耐热性研究. 聚氨酯工业, 2005, 20(5), 21-24. doi:10.3969/j.issn.1005-1902.2005.05.005http://dx.doi.org/10.3969/j.issn.1005-1902.2005.05.005
李校辉, 邢素丽, 杨金水, 梁威, 尹昌平. 聚氨酯水声吸声材料及吸声机理研究进展. 工程塑料应用, 2018, 46(7), 127-132.
Jiang X. L.; Qin R.; Wang M. H.; Min X.; Sheng Y. M.; Lu X. Controllable wide temperature range and high damping polyurethane elastomer based on disulfide bond and dangling chain. Polym. Adv. Technol., 2021, 32(5), 2185-2196. doi:10.1002/pat.5250http://dx.doi.org/10.1002/pat.5250
Chen X. L.; Zhu J.; Luo Y. L.; Chen J.; Ma X. F.; Bukhvalov D.; Liu H. B.; Zhang M.; Luo Z. Y. Phys. Chem. Chem. Phys., 2020, 22(31), 17620-17631. doi:10.1039/d0cp03013ahttp://dx.doi.org/10.1039/d0cp03013a
王清华,李效东, 杨盛良, 孟宪林, 张海永. 聚合物的分子结构与吸声性能研究. 高分子学报, 2008, (6), 517-521. doi:10.3321/j.issn:1000-3304.2008.06.002http://dx.doi.org/10.3321/j.issn:1000-3304.2008.06.002
张国荣, 卢咏来, 高悦凯, 岳冬梅, 吴丝竹. 不同压力条件下氢化丁腈橡胶的应力弛豫及分子动力学模拟研究. 高分子学报, 2012, (3), 272-277. doi:10.3724/SP.J.1105.2012.11159http://dx.doi.org/10.3724/SP.J.1105.2012.11159
Cao, Z,; Zhou, Q. Z.; Jie, S. Y.; Li, B. G. High cis-1,4 hydroxyl-terminated polybutadiene-based polyurethanes with extremely low glass transition temperature and excellent mechanical properties. Ind. Eng. Chem. Res., 2016, 55(6), 1582-1589. doi:10.1021/acs.iecr.5b04921http://dx.doi.org/10.1021/acs.iecr.5b04921
Liu Y. T.; Liu L.; Liang Y. R. Relationship between structure and dynamic mechanical properties of thermoplastic polyurethane elastomer containing bi-soft segment. J. Appl. Polym. Sci., 2020, 137(45), 49414. doi:10.1002/app.49414http://dx.doi.org/10.1002/app.49414
Beniah G.; Liu K.; Heath W. H.; Miller M. D.; Scheidt K. A. Novel thermoplastic polyhydroxyurethane elastomers as effective damping materials over broad temperature ranges. Eur. Polym. J., 2016, 84, 770-783. doi:10.1016/j.eurpolymj.2016.05.031http://dx.doi.org/10.1016/j.eurpolymj.2016.05.031
Wang S.; Xuan S. H.; Wang Y. P.; Xu C. H.; Mao Y.; Liu M.; Bai L. F. Stretchable polyurethane sponge scaffold strengthened shear stiffening polymer and its enhanced safeguarding performance. ACS Appl. Mater. Interfaces, 2016, 8, 4946-4954. doi:10.1021/acsami.5b12083http://dx.doi.org/10.1021/acsami.5b12083
Hong W.; Lin J. P.; Tian X. H.; Wang L. Q. Viscoelasticity of nanosheet-filled polymer composites: three regimes in the enhancement of moduli. J. Phys. Chem. B, 2020, 124, 6437-6447. doi:10.1021/acs.jpcb.0c04235http://dx.doi.org/10.1021/acs.jpcb.0c04235
Gao Y. Y.; Wu Y. P.; Liu J.; Zhang L. Q. Effect of chain structure on the glass transition temperature and viscoelastic property of cis-1,4-polybutadiene via molecular simulation. J. Polym. Sci. Part B: Polym. Phys., 2017, 55, 1005-1016. doi:10.1002/polb.24342http://dx.doi.org/10.1002/polb.24342
Zhao R. Q.; Wang Y.; Gong X. L. Influence of the interfacial interaction strength on the viscoelasticity of hard-soft block copolymer based nanocomposites: a molecular dynamics simulation study. Phys. Chem. Chem. Phys., 2020, 22, 3897-3905. doi:10.1039/c9cp06314ehttp://dx.doi.org/10.1039/c9cp06314e
Kremer K.; Grest G. S. Dynamics of entangled linear polymer melts: a molecular‐dynamics simulation. J. Chem. Phys., 1990, 92(8), 5057-5086. doi:10.1063/1.458541http://dx.doi.org/10.1063/1.458541
Giuntoli A.; Puosi F.; Leporini D.; Starr F. W.; Douglas J. F. Predictive relation for the α-relaxation time of a coarse-grained polymer melt under steady shear. Sci. Adv., 2020, 6(17), eazz0777. doi:10.1126/sciadv.aaz0777http://dx.doi.org/10.1126/sciadv.aaz0777
Xu J. W.; He C. B.; Toh K. C.; Lu X. H. intermolecular interaction in multicomponent supramolecular complexes through hydrogen-bonding association. Macromolecules, 2002, 35(23), 8846-8851. doi:10.1021/ma020971uhttp://dx.doi.org/10.1021/ma020971u
Noro A.; Matsushita Y.; Lodge T. P. Thermoreversible supramacromolecular ion gels via hydrogen bonding. Macromolecules, 2008, 41(15), 5839-5844. doi:10.1021/ma800739chttp://dx.doi.org/10.1021/ma800739c
李立民, 黄象安. 应用原子力显微镜研究热塑性聚氨酯的微相分离. 东华大学学报(自然科学版), 2004, 30(3), 9-13.
Tuckerman M. E.; Mundy C. J.; Balasubramanian S.; Klein M. L. Modified nonequilibrium molecular dynamics for fluid flows with energy conservation. J. Chem. Phys., 1997, 106(13), 5615-5621. doi:10.1063/1.473582http://dx.doi.org/10.1063/1.473582
Lees A. W.; Edwards S. F. The computer study of transport processes under extreme conditions. J. Phys. C: Solid State Phys., 1972, 5(15), 1921-1928. doi:10.1088/0022-3719/5/15/006http://dx.doi.org/10.1088/0022-3719/5/15/006
Plimpton S. Fast Parallel algorithms for short-range molecular dynamics. J. Comput. Phys., 1995, 117(1), 1-19. doi:10.1006/jcph.1995.1039http://dx.doi.org/10.1006/jcph.1995.1039
王世伟, 赵菲, 赵树高. 交联网络和填料网络的相互作用对 SSBR/BR并用胶性能的影响. 弹性体, 2012, 22(1), 11-14.
Cristea M.; Ibanescu S.; Cascaval C. N.; Rosu D. Dynamic mechanical analysis of polyurethane-epoxy interpenetrating polymer networks. High Perform. Polym., 2009, 21(5), 608-623. doi:10.1177/0954008309339940http://dx.doi.org/10.1177/0954008309339940
黄修长, 朱蓓丽, 胡碰, 华宏星. 静水压力下橡胶动态力学参数的声管测量方法. 上海交通大学学报, 2013, 47(10), 1504-1509.
0
Views
72
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution