浏览全部资源
扫码关注微信
清华大学化学系 北京 100084
Published:20 March 2023,
Published Online:14 October 2022,
Received:01 August 2022,
Accepted:16 September 2022
扫 描 看 全 文
张玉成,陈滔,王朝.基于离子偶极相互作用的高分子材料[J].高分子学报,2023,54(03):303-313.
Zhang Yu-cheng,Chen Tao,Wang Chao.Polymeric Materials Based on Ion-dipole Interactions[J].ACTA POLYMERICA SINICA,2023,54(03):303-313.
张玉成,陈滔,王朝.基于离子偶极相互作用的高分子材料[J].高分子学报,2023,54(03):303-313. DOI: 10.11777/j.issn1000-3304.2022.22262.
Zhang Yu-cheng,Chen Tao,Wang Chao.Polymeric Materials Based on Ion-dipole Interactions[J].ACTA POLYMERICA SINICA,2023,54(03):303-313. DOI: 10.11777/j.issn1000-3304.2022.22262.
离子偶极相互作用是一种超分子相互作用,作用基元为带相反电荷的偶极和离子. 离子偶极相互作用具有许多特性,如没有方向性和饱和性、自愈性以及动态性. 该作用可以同时赋予高分子材料优异的电学性能和力学性能,进而赋予了含有该作用的高分子材料在柔性电子、储能等领域巨大的应用潜力,同时吸引了科学家对该类材料的探索与开发. 本文主要总结了我们课题组在基于离子偶极相互作用的高分子材料方面的研究工作,从一系列不同的离子偶极基元出发,构筑具有不同力学以及电学性能的高分子材料,随后介绍了它们的应用. 例如人造肌肉、人造皮肤、离子电致发光、触摸板等,可用于可穿戴设备以及人机交互界面.
Ion-dipole interactions are supramolecular interactions in which oppositely charged dipoles and ions act as the substrate. The ion-dipole interaction has many properties
such as non-directional
non-saturation
self-healing and dynamic properties
which can give polymers excellent electrical and mechanical properties at the same time. These properties have given polymeric materials containing these interactions great potential for applications in flexible electronics and battery energy storage
and have attracted scientists to explore and develop these materials. The aim of this paper is to summarize the features and advantages of ionic-dipole interactions
while indicating the shortcomings in the field and attracting more scientists to the relevant research. We started from the types of materials containing ion-dipole interactions
introduces the possible acting substrates that can be used to build the materials
and explores how the different materials behave in terms of mechanical and electrical properties. It also combines our group's work on polymeric materials based on ionic dipole interactions
and concludes with a description of suitable application scenarios for such materials. For example
we discovered and exploited the ion-dipole interactions between fluorine-containing groups and imidazole cations to construct a self-healing ionic conductor. Applications include artificial muscles
artificial skin
ionic electroluminescence
and touch panels for wearable devices and human-machine interaction interfaces. Although there are currently a wide range of application scenarios for polymeric materials based on ion-dipole interactions
the development of related materials needs to be supported by fundamental science. For example
the regulation of electrical conductivity and mechanical properties can only be attempted by extensive experiments and not by more rational design.
非共价键作用超分子化学离子偶极相互作用
Noncovalent interactionSupramolecular chemistryIon-dipole interaction
Cisneros G. A.; Wikfeldt K. T.; Ojamäe L.; Lu J. B.; Xu Y.; Torabifard H.; Bartók A. P.; Csányi G.; Molinero V.; Paesani F. Modeling molecular interactions in water: From pairwise to many-body potential energy functions. Chem. Rev., 2016, 116(13), 7501-7528. doi:10.1021/acs.chemrev.5b00644http://dx.doi.org/10.1021/acs.chemrev.5b00644
Sippel K. H.; Quiocho F. A. Ion-dipole interactions and their functions in proteins. Protein Sci., 2015, 24(7), 1040-1046. doi:10.1002/pro.2685http://dx.doi.org/10.1002/pro.2685
Davis J. T.; Spada G. P. Supramolecular architectures generated by self-assembly of guanosine derivatives. Chem. Soc. Rev., 2007, 36(2), 296-313. doi:10.1039/b600282jhttp://dx.doi.org/10.1039/b600282j
Liu Y. Q.; He K.; Chen G.; Leow W. R.; Chen X. D. Nature-inspired structural materials for flexible electronic devices. Chem. Rev., 2017, 117(20), 12893-12941. doi:10.1021/acs.chemrev.7b00291http://dx.doi.org/10.1021/acs.chemrev.7b00291
Kang J.; Tok J. B. H.; Bao Z. N. Self-healing soft electronics. Nat. Electron., 2019, 2(4), 144-150. doi:10.1038/s41928-019-0235-0http://dx.doi.org/10.1038/s41928-019-0235-0
Amdursky N.; Głowacki E. D.; Meredith P. Macroscale biomolecular electronics and ionics. Adv. Mater., 2019, 31(3), e1802221. doi:10.1002/adma.201802221http://dx.doi.org/10.1002/adma.201802221
Berggren M.; Crispin X.; Fabiano S.; Jonsson M. P.; Simon D. T.; Stavrinidou E.; Tybrandt K.; Zozoulenko I. Ion electron-coupled functionality in materials and devices based on conjugated polymers. Adv. Mater., 2019, 31(22), e1805813. doi:10.1002/adma.201805813http://dx.doi.org/10.1002/adma.201805813
Bisri S. Z.; Shimizu S.; Nakano M.; Iwasa Y. Endeavor of iontronics: from fundamentals to applications of ion-controlled electronics. Adv. Mater., 2017, 29(25), 1607054. doi:10.1002/adma.201607054http://dx.doi.org/10.1002/adma.201607054
Yang C. H.; Suo, Z. G. Hydrogel ionotronics. Nat. Rev. Mater., 2018, 3(6), 125-142. doi:10.1038/s41578-018-0018-7http://dx.doi.org/10.1038/s41578-018-0018-7
Chun H. G.; Chung, T. D. Iontronics. Annual Rev. Anal. Chem., 2015, 8, 441-462. doi:10.1146/annurev-anchem-071114-040202http://dx.doi.org/10.1146/annurev-anchem-071114-040202
Kuznetsova O. V.; Egorochkin A. N.; Khamaletdinova N. M. Ion-dipole interaction (polarization effect) in compounds of the group 14 elements (a review). Russ. J. Gen. Chem., 2021, 91(12), 2352-2372. doi:10.1134/S1070363221120021http://dx.doi.org/10.1134/S1070363221120021
Hehre W. J.; Pau C. F.; Headley A. D.; Taft R. W.; Topsom R. D. A scale of directional substituent polarizability parameters from ab initio calculations of polarizability potentials. J. Am. Chem. Soc., 1986, 108(7), 1711-1712. doi:10.1021/ja00267a063http://dx.doi.org/10.1021/ja00267a063
Zhang Y. C.; Li M. X.; Qin B.; Chen L. L.; Liu Y. C.; Zhang X.; Wang C. Highly transparent, underwater self-healing, and ionic conductive elastomer based on multivalent ion-dipole interactions. Chem. Mater., 2020, 32(15), 6310-6317. doi:10.1021/acs.chemmater.0c00096http://dx.doi.org/10.1021/acs.chemmater.0c00096
Li M. X.; Chen L. L.; Li Y. R.; Dai X. B.; Jin Z. K.; Zhang Y. C.; Feng W. W.; Yan L. T.; Cao Y.; Wang C. Superstretchable, yet stiff, fatigue-resistant ligament-like elastomers. Nat. Commun., 2022, 13, 2279. doi:10.1038/s41467-022-30021-3http://dx.doi.org/10.1038/s41467-022-30021-3
Liu K.; Jiang Y. W.; Bao Z. N.; Yan X. Z. Skin-inspired electronics enabled by supramolecular polymeric materials. CCS Chem., 2019, 1(4), 431-447. doi:10.31635/ccschem.019.20190048http://dx.doi.org/10.31635/ccschem.019.20190048
Zhang W. R.; Jiang H. Y.; Chang Z. G.; Wu W.; Wu G. H.; Wu R. M.; Li J. Q. Recent achievements in self-healing materials based on ionic liquids: a review. J Mater Sci, 2020, 55(28), 13543-13558. doi:10.1007/s10853-020-04981-0http://dx.doi.org/10.1007/s10853-020-04981-0
Zhang L.; Jiang D. W.; Dong T. H.; Das R.; Pan D.; Sun C. Y.; Wu Z. J.; Zhang Q. B.; Liu C. T.; Guo Z. H. Overview of ionogels in flexible electronics. Chem. Rec., 2020, 20(9), 948-967. doi:10.1002/tcr.202000041http://dx.doi.org/10.1002/tcr.202000041
Keplinger C.; Sun J. Y.; Foo C. C.; Rothemund P.; Whitesides G. M.; Suo Z. G. Stretchable, transparent, ionic conductors. Science, 2013, 341(6149), 984-987. doi:10.1126/science.1240228http://dx.doi.org/10.1126/science.1240228
Cao Y.; Morrissey T. G.; Acome E.; Allec S. I.; Wong B. M.; Keplinger C.; Wang C. A transparent, self-healing, highly stretchable ionic conductor. Adv. Mater., 2017, 29(10), 1605099. doi:10.1002/adma.201605099http://dx.doi.org/10.1002/adma.201605099
Lei Z. Y.; Wu P. Y. A supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities. Nat. Commun., 2018, 9, 1134. doi:10.1038/s41467-018-03456-whttp://dx.doi.org/10.1038/s41467-018-03456-w
Cao Y.; Tan Y. J.; Li S.; Lee W. W.; Guo H. C.; Cai Y. Q.; Wang C.; Tee B. C. K. Self-healing electronic skins for aquatic environments. Nat. Electron., 2019, 2(2), 75-82. doi:10.1038/s41928-019-0206-5http://dx.doi.org/10.1038/s41928-019-0206-5
Yang C. H.; Chen B. H.; Zhou J. X.; Chen Y. M.; Suo Z. G. Electroluminescence of giant stretchability. Adv. Mater., 2016, 28(22), 4480-4484. doi:10.1002/adma.201504031http://dx.doi.org/10.1002/adma.201504031
Tan Y. J.; Godaba H.; Chen G.; Tan S. T. M.; Wan G. X.; Li G.; Lee P. M.; Cai Y. Q.; Li S.; Shepherd R. F.; Ho J. S.; Tee B. C. K. A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics. Nat. Mater., 2020, 19(2), 182-188. doi:10.1038/s41563-019-0548-4http://dx.doi.org/10.1038/s41563-019-0548-4
Kim C. C.; Lee H. H.; Oh K. H.; Sun J. Y. Highly stretchable, transparent ionic touch panel. Science, 2016, 353(6300), 682-687. doi:10.1126/science.aaf8810http://dx.doi.org/10.1126/science.aaf8810
Xia D. Y.; Wang P.; Ji X. F.; Khashab N. M.; Sessler J. L.; Huang F. H. Functional supramolecular polymeric networks: the marriage of covalent polymers and macrocycle-based host-guest interactions. Chem. Rev., 2020, 120(13), 6070-6123. doi:10.1021/acs.chemrev.9b00839http://dx.doi.org/10.1021/acs.chemrev.9b00839
Yang L. L.; Tan X. X.; Wang Z. Q.; Zhang X. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem. Rev., 2015, 115(15), 7196-7239. doi:10.1021/cr500633bhttp://dx.doi.org/10.1021/cr500633b
Barrow S. J.; Kasera S.; Rowland M. J.; del Barrio J.; Scherman O. A. Cucurbituril-based molecular recognition. Chem. Rev., 2015, 115(22), 12320-12406. doi:10.1021/acs.chemrev.5b00341http://dx.doi.org/10.1021/acs.chemrev.5b00341
Wei P. F.; Yan X. Z.; Huang F. H. Supramolecular polymers constructed by orthogonal self-assembly based on host-guest and metal-ligand interactions. Chem. Soc. Rev., 2015, 44(3), 815-832. doi:10.1039/c4cs00327fhttp://dx.doi.org/10.1039/c4cs00327f
Badjić J. D.; Nelson A.; Cantrill S. J.; Turnbull W. B.; Stoddart J. F. Multivalency and cooperativity in supramolecular chemistry. Acc. Chem. Res., 2005, 38(9), 723-732. doi:10.1021/ar040223khttp://dx.doi.org/10.1021/ar040223k
Mahadevi A. S.; Sastry G. N. Cooperativity in noncovalent interactions. Chem. Rev., 2016, 116(5), 2775-2825. doi:10.1021/cr500344ehttp://dx.doi.org/10.1021/cr500344e
Fasting C.; Schalley C. A.; Weber M.; Seitz O.; Hecht S.; Koksch B.; Dernedde J.; Graf C.; Knapp E. W.; Haag R. Multivalency as a chemical organization and action principle. Angew. Chem. Int. Ed Engl., 2012, 51(42), 10472-10498. doi:10.1002/anie.201201114http://dx.doi.org/10.1002/anie.201201114
Zhou Q.; Ma J.; Dong S. M.; Li X. F.; Cui G. L. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater., 2019, 31(50), e1902029. doi:10.1002/adma.201902029http://dx.doi.org/10.1002/adma.201902029
Yang P. X.; Cui W. Y.; Li L. B.; Liu L.; An M. Z. Characterization and properties of ternary P(VdF-HFP)-LiTFSI-EMITFSI ionic liquid polymer electrolytes. Solid State Sci., 2012, 14(5), 598-606. doi:10.1016/j.solidstatesciences.2012.02.005http://dx.doi.org/10.1016/j.solidstatesciences.2012.02.005
Lee M. J.; Han J.; Lee K.; Lee Y. J.; Kim B. G.; Jung K. N.; Kim B. J.; Lee S. W. Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature, 2022, 601(7892), 217-222. doi:10.1038/s41586-021-04209-4http://dx.doi.org/10.1038/s41586-021-04209-4
Susan M. A. B. H.; Kaneko T.; Noda A.; Watanabe M. Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J. Am. Chem. Soc., 2005, 127(13), 4976-4983. doi:10.1021/ja045155bhttp://dx.doi.org/10.1021/ja045155b
Zhou D.; Shanmukaraj D.; Tkacheva A.; Armand M.; Wang G. X. Polymer electrolytes for lithium-based batteries: Advances and prospects. Chem, 2019, 5(9), 2326-2352. doi:10.1016/j.chempr.2019.05.009http://dx.doi.org/10.1016/j.chempr.2019.05.009
Sun J. Y.; Zhao X. H.; Illeperuma W. R. K.; Chaudhuri O.; Oh K. H.; Mooney D. J.; Vlassak J. J.; Suo Z. G. Highly stretchable and tough hydrogels. Nature, 2012, 489(7414), 133-136. doi:10.1038/nature11409http://dx.doi.org/10.1038/nature11409
Jonscher A. K. Dielectric relaxation in solids. J. Phys. D: Appl. Phys., 1999, 32(14), R57-R70. doi:10.1088/0022-3727/32/14/201http://dx.doi.org/10.1088/0022-3727/32/14/201
You I.; Mackanic D. G.; Matsuhisa N.; Kang J.; Kwon J.; Beker L.; Mun J.; Suh W.; Kim T. Y.; Tok J. B. H.; Bao Z. N.; Jeong U. Artificial multimodal receptors based on ion relaxation dynamics. Science, 2020, 370(6519), 961-965. doi:10.1126/science.aba5132http://dx.doi.org/10.1126/science.aba5132
Xu L. G.; Huang Z. K.; Deng Z. S.; Du Z. K.; Sun T. L.; Guo Z. H.; Yue K. A transparent, highly stretchable, solvent-resistant, recyclable multifunctional ionogel with underwater self-healing and adhesion for reliable strain sensors. Adv. Mater., 2021, 33(51), e2105306. doi:10.1002/adma.202105306http://dx.doi.org/10.1002/adma.202105306
Qiu W. L.; Chen G. Q.; Zhu H.; Zhang Q.; Zhu S. P. Enhanced stretchability and robustness towards flexible ionotronics via double-network structure and ion-dipole interactions. Chem. Eng. J., 2022, 434, 134752. doi:10.1016/j.cej.2022.134752http://dx.doi.org/10.1016/j.cej.2022.134752
Li X. Y.; Cui K. P.; Kurokawa T.; Ye Y. N.; Sun T. L.; Yu C. T.; Creton C.; Gong J. P. Effect of mesoscale phase contrast on fatigue-delaying behavior of self-healing hydrogels. Sci. Adv., 2021, 7(16), eabe8210. doi:10.1126/sciadv.abe8210http://dx.doi.org/10.1126/sciadv.abe8210
Pelrine R.; Kornbluh R.; Pei Q.; Joseph J. High-speed electrically actuated elastomers with strain greater than 100%. Science, 2000, 287(5454), 836-839. doi:10.1126/science.287.5454.836http://dx.doi.org/10.1126/science.287.5454.836
O'Halloran A.; O'Malley F.; McHugh P. A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys., 2008, 104(7), 071101. doi:10.1063/1.2981642http://dx.doi.org/10.1063/1.2981642
Anderson I. A.; Gisby T. A.; McKay T. G.; O'Brien B. M.; Calius E. P. Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J. Appl. Phys., 2012, 112(4), 041101. doi:10.1063/1.4740023http://dx.doi.org/10.1063/1.4740023
Hammock M. L.; Chortos A.; Tee B. C. K.; Tok J. B. H.; Bao Z. N. 25th anniversary article: The evolution of electronic skin (e-skin): A brief history, design considerations, and recent progress. Adv. Mater., 2013, 25(42), 5997-6038. doi:10.1002/adma.201302240http://dx.doi.org/10.1002/adma.201302240
Miyamoto A.; Lee S.; Cooray N. F.; Lee S.; Mori M. M.; Matsuhisa N.; Jin H.; Yoda L.; Yokota T.; Itoh A.; Sekino M.; Kawasaki H.; Ebihara T.; Amagai M.; Someya T. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol., 2017, 12(9), 907-913. doi:10.1038/nnano.2017.125http://dx.doi.org/10.1038/nnano.2017.125
Webb R. C.; Bonifas A. P.; Behnaz A.; Zhang Y. H.; Yu K. J.; Cheng H. Y.; Shi M. X.; Bian Z. G.; Liu Z. J.; Kim Y. S.; Yeo W. H.; Park J. S.; Song J. Z.; Li Y. H.; Huang Y. G.; Gorbach A. M.; Rogers J. A. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater., 2013, 12(10), 938-944. doi:10.1038/nmat3755http://dx.doi.org/10.1038/nmat3755
Liu Y. C.; Chen T.; Jin Z. K.; Li M. X.; Zhang D. D.; Duan L.; Zhao Z. G.; Wang C. Tough, stable and self-healing luminescent perovskite-polymer matrix applicable to all harsh aquatic environments. Nat. Commun., 2022, 13, 1338. doi:10.1038/s41467-022-29084-zhttp://dx.doi.org/10.1038/s41467-022-29084-z
Larson C.; Peele B.; Li S.; Robinson S.; Totaro M.; Beccai L.; Mazzolai B.; Shepherd R. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science, 2016, 351(6277), 1071-1074. doi:10.1126/science.aac5082http://dx.doi.org/10.1126/science.aac5082
0
Views
200
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution