浏览全部资源
扫码关注微信
1.同济大学材料科学与工程学院高分子材料系 上海 201804
2.同济大学附属上海市第四人民医院妇产科 上海 200434
Published:20 March 2023,
Published Online:26 October 2022,
Received:03 August 2022,
Accepted:08 September 2022
扫 描 看 全 文
石隽秋,陈帅,朱云卿等.生物医用高分子囊泡[J].高分子学报,2023,54(03):314-326.
Shi Jun-qiu,Chen Shuai,Zhu Yun-qing,et al.Polymer Vesicles for Biomedical Applications[J].ACTA POLYMERICA SINICA,2023,54(03):314-326.
石隽秋,陈帅,朱云卿等.生物医用高分子囊泡[J].高分子学报,2023,54(03):314-326. DOI: 10.11777/j.issn1000-3304.2022.22268.
Shi Jun-qiu,Chen Shuai,Zhu Yun-qing,et al.Polymer Vesicles for Biomedical Applications[J].ACTA POLYMERICA SINICA,2023,54(03):314-326. DOI: 10.11777/j.issn1000-3304.2022.22268.
高分子囊泡由于其独特的腔-膜-冠结构,在生物医用等领域具有重要应用前景. 本专论从自组装新机理/新方法和新的生物医学应用两方面总结和评述了近期生物医用高分子囊泡领域的研究进展. 前者包括构建高效包载生物大分子的囊泡的“酸诱导吸附”和“亲和强化吸引”原理、构建完全非对称冠囊泡的“胶束-囊泡转变法”、构建高级囊泡结构的“融合诱导粒子自组装”方法、可宏量制备囊泡的氨基酸环内酸酐开环聚合诱导自组装方法;后者主要介绍“以糖控糖”囊泡、治疗糖尿病溃疡囊泡、抗菌囊泡、抗癌囊泡、靶向治疗骨质疏松症囊泡和护肾血管造影囊泡. 最后,对高分子囊泡的未来发展方向进行了展望.
Polymer vesicles have an important application prospect in biomedical and other fields due to their unique lumen-membrane-corona structure. In this feature article
we highlighted recent advance in polymer vesicles for biomedical applications
including new mechanism and methods for self-assembly
and new biomedical applications. The former includes two principles of acid-induced adsorption and affinity-enhanced attraction for preparing vesicles with ultrahigh biomacromolecular loading efficiency
"micelle to vesicle transition" strategy for preparing asymmetric vesicles
fusion-induced particle assembly to build hierarchical vesicles
and ring-opening polymerization of
N
-carboxyanhydride-induced self-assembly to fabricate vesicles on a large scale; the latter includes vesicles for blood glucose control
vesicles to treat diabetic ulcers
antibacterial vesicles
anticancer vesicles
bone-targeting vesicles to treat osteoporosis and renoprotective angiographic vesicles. Finally
the future development of polymer vesicles and their potential biomedical applications are forecasted.
高分子囊泡大分子自组装生物医用材料融合诱导自组装
Polymer vesiclesMacromolecular self-assemblyBiomedical materialsFusion-induced particle assembly
Sun J. W.; Rijpkema S. J.; Luan J. B.; Zhang S. H.; Wilson D. A. Generating biomembrane-like local curvature in polymersomes via dynamic polymer insertion. Nat. Commun., 2021, 12, 2235. doi:10.1038/s41467-021-22563-9http://dx.doi.org/10.1038/s41467-021-22563-9
Tu Y. F.; Peng F.; Adawy A.; Men Y. J.; Abdelmohsen L. K. E. A.; Wilson D. A. Mimicking the cell: bio-inspired functions of supramolecular assemblies. Chem. Rev., 2016, 116(4), 2023-2078. doi:10.1021/acs.chemrev.5b00344http://dx.doi.org/10.1021/acs.chemrev.5b00344
Wei P.; Sun M.; Yang B.; Xiao J. G.; Du J. Z. Ultrasound-responsive polymersomes capable of endosomal escape for efficient cancer therapy. J. Control. Release, 2020, 322, 81-94. doi:10.1016/j.jconrel.2020.03.013http://dx.doi.org/10.1016/j.jconrel.2020.03.013
Chen S.; Cornel E. J.; Du J. Z. Controlling membrane phase separation of polymersomes for programmed drug release. Chinese J. Polym. Sci., 2022, 40(9), 1006-1015. doi:10.1007/s10118-022-2683-7http://dx.doi.org/10.1007/s10118-022-2683-7
Liu D. Q.; Cornel E. J.; Du J. Z. Renoprotective angiographic polymersomes. Adv. Funct. Mater., 2021, 31(1), 2007330. doi:10.1002/adfm.202007330http://dx.doi.org/10.1002/adfm.202007330
Xiao Y. F.; Sun H.; Du J. Z. Sugar-breathing glycopolymersomes for regulating glucose level. J. Am. Chem. Soc., 2017, 139(22), 7640-7647. doi:10.1021/jacs.7b03219http://dx.doi.org/10.1021/jacs.7b03219
Zhu Y. Q.; Yang B.; Chen S.; Du J. Z. Polymer vesicles: Mechanism, preparation, application, and responsive behavior. Prog. Polym. Sci., 2017, 64, 1-22. doi:10.1016/j.progpolymsci.2015.05.001http://dx.doi.org/10.1016/j.progpolymsci.2015.05.001
Zhu Y. Q.; Wang F.; Zhang C.; Du J. Z. Preparation and mechanism insight of nuclear envelope-like polymer vesicles for facile loading of biomacromolecules and enhanced biocatalytic activity. ACS Nano, 2014, 8(7), 6644-6654. doi:10.1021/nn502386jhttp://dx.doi.org/10.1021/nn502386j
Wang F.; Gao J. Y.; Xiao J. G.; Du J. Z. Dually gated polymersomes for gene delivery. Nano Lett., 2018, 18(9), 5562-5568. doi:10.1021/acs.nanolett.8b01985http://dx.doi.org/10.1021/acs.nanolett.8b01985
Liu Q. M.; Chen J.; Du J. Z. Asymmetrical polymer vesicles with a “stealthy” outer corona and an endosomal-escape-accelerating inner corona for efficient intracellular anticancer drug delivery. Biomacromolecules, 2014, 15(8), 3072-3082. doi:10.1021/bm500676ehttp://dx.doi.org/10.1021/bm500676e
Yang Y. Y.; Chen L. S.; Sun M.; Wang C. Y.; Fan Z.; Du J. Z. Biodegradable polypeptide-based vesicles with intrinsic blue fluorescence for antibacterial visualization. Chinese J. Polym. Sci., 2021, 39(11), 1412-1420. doi:10.1007/s10118-021-2593-0http://dx.doi.org/10.1007/s10118-021-2593-0
Chen S.; Lin S.; Xi Y. J.; Xiao Y. F.; Du J. Z. Polymersomes with inhomogeneous membranes, asymmetrical coronas and fused membranes and coronas. Chin. Sci. Bull., 2020, 65(24), 2615-2626. doi:10.1360/tb-2020-0472http://dx.doi.org/10.1360/tb-2020-0472
Liu D. Q.; Sun H.; Xiao Y. F.; Chen S.; Cornel E. J.; Zhu Y. Q.; Du J. Z. Design principles, synthesis and biomedical applications of polymer vesicles with inhomogeneous membranes. J. Control. Release, 2020, 326, 365-386. doi:10.1016/j.jconrel.2020.07.018http://dx.doi.org/10.1016/j.jconrel.2020.07.018
Mcbain J. W. Mobility of highly-charged micelles. Trans. Faraday Soc., 1913, 9, 99-101.
于春阳, 李善龙, 李珂, 周永丰. 两嵌段共聚物反相溶剂中组装结构转变动力学的模拟研究. 高分子学报, 2020, 51(3), 311-318.
Lin S.; Sun H.; Cornel E. J.; Jiang J. H.; Zhu Y. Q.; Fan Z.; Du J. Z. Denting nanospheres with a short peptide. Chinese J. Polym. Sci., 2021, 39(12), 1538-1549. doi:10.1007/s10118-021-2599-7http://dx.doi.org/10.1007/s10118-021-2599-7
Sun H.; Liu D. Q.; Du J. Z. Nanobowls with controlled openings and interior holes driven by the synergy of hydrogen bonding and π-π interaction. Chem. Sci., 2018, 10(3), 657-664. doi:10.1039/c8sc03995jhttp://dx.doi.org/10.1039/c8sc03995j
Yu C. Y.; Mu J. H.; Fu Y. L.; Zhang Y. C.; Han J. S.; Zhao R. Y.; Zhao J.; Wang Z. H.; Zhao Z. C.; Li W. J.; Liu F. S. Azobenzene based photo-responsive mechanical actuator fabricated by intermolecular H-bond interaction. Chinese J. Polym. Sci., 2021, 39(4), 417-424. doi:10.1007/s10118-021-2504-4http://dx.doi.org/10.1007/s10118-021-2504-4
Zhang X. Y.; Hong K.; Sun Q. M.; Zhu Y. Q.; Du J. Z. Bioreducible, arginine-rich polydisulfide-based siRNA nano complexes with excellent tumor penetration for efficient gene silencing. Biomater. Sci., 2021, 9(15), 5275-5292. doi:10.1039/d1bm00643fhttp://dx.doi.org/10.1039/d1bm00643f
朱有亮, 吕中元. 超分子和高分子自组装的动力学模拟研究. 高分子学报, 2021, 52(8): 884-897. doi:10.11777/j.issn1000-3304.2021.21090http://dx.doi.org/10.11777/j.issn1000-3304.2021.21090
Zhang X. Supramolecular polymer chemistry: Past, present, and future. Chinese J. Polym. Sci., 2022, 40(6), 541-542. doi:10.1007/s10118-022-2748-7http://dx.doi.org/10.1007/s10118-022-2748-7
何俊男, 郑玉斌, 郑楠. 基于炔烃参与的多组分聚合构建氧化还原双重响应型高分子药物载体. 高分子学报, 2021, 52(10), 1298-1307.
江金辉, 杨雨嬴, 凡刘杰, 朱云卿, 杜建忠. 一步酸化法制备抗菌肽胶束及其抗菌性能研究. 高分子学报, 2021, 52(12), 1559-1567. doi:10.11777/j.issn1000-3304.2021.21135http://dx.doi.org/10.11777/j.issn1000-3304.2021.21135
陈灵珊, 洪苑秀, 贺石生, 范震, 杜建忠. 聚(ε-己内酯)-多肽共聚物胶束增强抗生素的抗菌活性. 物理化学学报, 2021, 37, 1910059.
Xi Y. J.; Wang Y.; Gao J. Y.; Xiao Y. F.; Du J. Z. Dual corona vesicles with intrinsic antibacterial and enhanced antibiotic delivery capabilities for effective treatment of biofilm-induced periodontitis. ACS Nano, 2019, 13(12), 13645-13657. doi:10.1021/acsnano.9b03237http://dx.doi.org/10.1021/acsnano.9b03237
Zhao R.; Zhou Y. J.; Jie K. C.; Yang J.; Perrier S.; Huang F. H. Fluorescent supramolecular polymersomes based on pillararene/paraquat molecular recognition for pH-controlled drug release. Chinese J. Polym. Sci., 2020, 38(1), 1-8. doi:10.1007/s10118-019-2305-1http://dx.doi.org/10.1007/s10118-019-2305-1
廖雨瑶, 范震, 杜建忠. 光交联固化的聚合物囊泡用于降温触发的药物释放. 物理化学学报, 2021, 37, 1912053. doi:10.3866/PKU.WHXB201912053http://dx.doi.org/10.3866/PKU.WHXB201912053
Qiu H. B.; Du V. A.; Winnik M. A.; Manners I. Branched cylindrical micelles via crystallization-driven self-assembly. J. Am. Chem. Soc., 2013, 135(47), 17739-17742. doi:10.1021/ja410176nhttp://dx.doi.org/10.1021/ja410176n
Zhang J. M.; Jiang J. H.; Lin S.; Cornel E. J.; Li C.; Du J. Z. Polymersomes: From MacromolecularSelf‐assembly to particle assembly. Chin. J. Chem., 2022, 40(15), 1842-1855. doi:10.1002/cjoc.202200182http://dx.doi.org/10.1002/cjoc.202200182
Lv F.; An Z. S.; Wu P. Y. Efficient access to inverse bicontinuous mesophases via polymerization-induced cooperative assembly. CCS Chem., 2021, 3(8), 2211-2222. doi:10.31635/ccschem.020.202000407http://dx.doi.org/10.31635/ccschem.020.202000407
Chen S.; Qin J. L.; Du J. Z. Two principles for polymersomes with ultrahigh biomacromolecular loading efficiencies: acid-induced adsorption and affinity-enhanced attraction. Macromolecules, 2020, 53(10), 3978-3993. doi:10.1021/acs.macromol.0c00252http://dx.doi.org/10.1021/acs.macromol.0c00252
Blanazs A.; Massignani M.; Battaglia G.; Armes S. P.; Ryan A. J. Tailoring macromolecular expression at polymersome surfaces. Adv. Funct. Mater., 2009, 19(18), 2906-2914. doi:10.1002/adfm.200900201http://dx.doi.org/10.1002/adfm.200900201
Asano I.; So S.; Lodge T. P. Oil-in-oil emulsions stabilized by asymmetric polymersomes formed by AC + BC block polymer Co-assembly. J. Am. Chem. Soc., 2016, 138(14), 4714-4717. doi:10.1021/jacs.6b01697http://dx.doi.org/10.1021/jacs.6b01697
Schrage S.; Sigel R.; Schlaad H. Formation of amphiphilic polyion complex vesicles from mixtures of oppositely charged block ionomers. Macromolecules, 2003, 36(5), 1417-1420. doi:10.1021/ma0255940http://dx.doi.org/10.1021/ma0255940
Wei P.; Cornel E. J.; Du J. Z. Breaking the corona symmetry of vesicles. Macromolecules, 2021, 54(16), 7603-7611. doi:10.1021/acs.macromol.1c00060http://dx.doi.org/10.1021/acs.macromol.1c00060
Xiao J. G.; Du J. Z. Tetrapod polymersomes. J. Am. Chem. Soc., 2020, 142(14), 6569-6577. doi:10.1021/jacs.9b12925http://dx.doi.org/10.1021/jacs.9b12925
Zhang X. Y.; Huang Q. T.; Wang F.; Sun H.; Xiao J. G.; Cornel E. J.; Zhu Y. Q.; Du J. Z. Giant polymer vesicles with a latticelike membrane. ACS Macro Lett., 2021, 10(8), 1015-1022. doi:10.1021/acsmacrolett.1c00254http://dx.doi.org/10.1021/acsmacrolett.1c00254
Sun H.; Chen S.; Li X.; Leng Y.; Zhou X. Y.; Du J. Z. Lateral growth of cylinders. Nat. Commun., 2022, 13, 2170. doi:10.1038/s41467-022-29863-8http://dx.doi.org/10.1038/s41467-022-29863-8
Wright D. B.; Touve M. A.; Adamiak L.; Gianneschi N. C. ROMPISA: Ring-opening metathesis polymerization-induced self-assembly. ACS Macro Lett., 2017, 6(9), 925-929. doi:10.1021/acsmacrolett.7b00408http://dx.doi.org/10.1021/acsmacrolett.7b00408
Cai W. B.; Liu D. D.; Chen Y.; Zhang L.; Tan J. B. Enzyme-assisted photoinitiated polymerization-induced self-assembly in continuous flow reactors with oxygen tolerance. Chinese J. Polym. Sci., 2021, 39(9), 1127-1137. doi:10.1007/s10118-021-2533-zhttp://dx.doi.org/10.1007/s10118-021-2533-z
Figg C. A.; Simula A.; Gebre K. A.; Tucker B. S.; Haddleton D. M.; Sumerlin B. S. Polymerization-induced thermal self-assembly (PITSA). Chem. Sci., 2015, 6(2), 1230-1236. doi:10.1039/c4sc03334ehttp://dx.doi.org/10.1039/c4sc03334e
Ding Y.; Cai M.; Cui Z. G.; Huang L. L.; Wang L.; Lu X. H.; Cai Y. L. Synthesis of low-dimensional polyion complex nanomaterials via polymerization-induced electrostatic self-assembly. Angew. Chem. Int. Ed. Engl., 2018, 57(4), 1053-1056. doi:10.1002/anie.201710811http://dx.doi.org/10.1002/anie.201710811
Cornel E. J.; Jiang J. H.; Chen S.; Du J. Z. Principles and characteristics of polymerization-induced self-assembly with various polymerization techniques. CCS Chem., 2021, 3(4), 2104-2125. doi:10.31635/ccschem.020.202000470http://dx.doi.org/10.31635/ccschem.020.202000470
Warren N. J.; Armes S. P. Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J. Am. Chem. Soc., 2014, 136(29), 10174-10185. doi:10.1021/ja502843fhttp://dx.doi.org/10.1021/ja502843f
Man S. K.; Wang X.; Zheng J. W.; An Z. S. Effect of butyl α-hydroxymethyl acrylate monomer structure on the morphology produced via aqueous emulsion polymerization-induced self-assembly. Chinese J. Polym. Sci., 2020, 38(1), 9-16. doi:10.1007/s10118-019-2303-3http://dx.doi.org/10.1007/s10118-019-2303-3
Jiang J. H.; Zhang X. Y.; Fan Z.; Du J. Z. Ring-opening polymerization of N-carboxyanhydride-induced self-assembly for fabricating biodegradable polymer vesicles. ACS Macro Lett., 2019, 8(10), 1216-1221. doi:10.1021/acsmacrolett.9b00606http://dx.doi.org/10.1021/acsmacrolett.9b00606
Sun H.; Saeedi P.; Karuranga S.; Pinkepank M.; Ogurtsova K.; Duncan B. B.; Stein C.; Basit A.; Chan J. C. N.; Mbanya J. C.; Pavkov M. E.; Ramachandaran A.; Wild S. H.; James S.; Herman W. H.; Zhang P.; Bommer C.; Kuo S.; Boyko E. J.; Magliano D. J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract., 2022, 183, 109119. doi:10.1016/j.diabres.2021.109119http://dx.doi.org/10.1016/j.diabres.2021.109119
Xiao Y. F.; Hu Y.; Du J. Z. Controlling blood sugar levels with a glycopolymersome. Mater. Horiz., 2019, 6(10), 2047-2055. doi:10.1039/c9mh00625ghttp://dx.doi.org/10.1039/c9mh00625g
Wang T.; Li Y. R.; Cornel E. J.; Li C.; Du J. Z. Combined antioxidant-antibiotic treatment for effectively healing infected diabetic wounds based on polymer vesicles. ACS Nano, 2021, 15(5), 9027-9038. doi:10.1021/acsnano.1c02102http://dx.doi.org/10.1021/acsnano.1c02102
Krämer R. The pharmaceutical potential of manganese-based superoxide dismutase mimics. Angew. Chem. Int. Edit Engl., 2000, 39(24), 4469-4470. doi:10.1002/1521-3773(20001215)39:24<4469::aid-anie4469>3.0.co;2-9http://dx.doi.org/10.1002/1521-3773(20001215)39:24<4469::aid-anie4469>3.0.co;2-9
Bonetta R. Potential therapeutic applications of MnSODs and SOD-mimetics. Chemistry, 2018, 24(20), 5032-5041. doi:10.1002/chem.201704561http://dx.doi.org/10.1002/chem.201704561
Liu D. Q.; Liao Y. Y.; Cornel E. J.; Lv M. C.; Wu T.; Zhang X. Y.; Fan L. J.; Sun M.; Zhu Y. Q.; Fan Z.; Du J. Z. Polymersome wound dressing spray capable of bacterial inhibition and H2S generation for complete diabetic wound healing. Chem. Mater., 2021, 33(20), 7972-7985. doi:10.1021/acs.chemmater.1c01872http://dx.doi.org/10.1021/acs.chemmater.1c01872
Kashfi K.; Olson K. R. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. Biochem. Pharmacol., 2013, 85(5), 689-703. doi:10.1016/j.bcp.2012.10.019http://dx.doi.org/10.1016/j.bcp.2012.10.019
Olas B. Hydrogen sulfide in signaling pathways. Clin. Chim. Acta, 2015, 439, 212-218. doi:10.1016/j.cca.2014.10.037http://dx.doi.org/10.1016/j.cca.2014.10.037
Foster J. C.; Radzinski S. C.; Zou X. L.; Finkielstein C. V.; Matson J. B. H2S-releasing polymer micelles for studying selective cell toxicity. Mol. Pharmaceutics, 2017, 14(4), 1300-1306. doi:10.1021/acs.molpharmaceut.6b01117http://dx.doi.org/10.1021/acs.molpharmaceut.6b01117
Wang T.; Qin J. L.; Cheng J. J.; Li C.; Du J. Z. Intelligent design of polymersomes for antibacterial and anticancer applications. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 2022, e1822. doi:10.1002/wnan.1822http://dx.doi.org/10.1002/wnan.1822
于谦, 陈红. 具有“杀菌-释菌”功能转换的智能抗菌表面. 高分子学报, 2020, 51(4), 319-325. doi:10.11777/j.issn1000-3304.2020.20031http://dx.doi.org/10.11777/j.issn1000-3304.2020.20031
Brogden K. A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, 3(3), 238-250. doi:10.1038/nrmicro1098http://dx.doi.org/10.1038/nrmicro1098
Zasloff M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870), 389-395. doi:10.1038/415389ahttp://dx.doi.org/10.1038/415389a
Hancock R. E. W.; Sahl H. G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557. doi:10.1038/nbt1267http://dx.doi.org/10.1038/nbt1267
Xie J. Q.; Zhao Q.; Li S. S.; Yan Z. B.; Li J.; Li Y.; Mou L. Y.; Zhang B. Z.; Yang W. L.; Miao X. K.; Jiang X. X.; Wang R. Novel antimicrobial peptide CPF-C1 analogs with superior stabilities and activities against multidrug-resistant bacteria. Chem. Biol. Drug Des., 2017, 90(5), 690-702. doi:10.1111/cbdd.12988http://dx.doi.org/10.1111/cbdd.12988
Chen J.; Wang F.; Liu Q. M.; Du J. Z. Antibacterial polymeric nanostructures for biomedical applications. Chem. Commun., 2014, 50(93), 14482-14493. doi:10.1039/c4cc03001jhttp://dx.doi.org/10.1039/c4cc03001j
Sun H.; Hong Y. X.; Xi Y. J.; Zou Y. J.; Gao J. Y.; Du J. Z. Synthesis, self-assembly, and biomedical applications of antimicrobial peptide-polymer conjugates. Biomacromolecules, 2018, 19(6), 1701-1720. doi:10.1021/acs.biomac.8b00208http://dx.doi.org/10.1021/acs.biomac.8b00208
Zhou C. C.; Yuan Y.; Zhou P. Y.; Wang F.; Hong Y. X.; Wang N. S.; Xu S. G.; Du J. Z. Highly effective antibacterial vesicles based on peptide-mimetic alternating copolymers for bone repair. Biomacromolecules, 2017, 18(12), 4154-4162. doi:10.1021/acs.biomac.7b01209http://dx.doi.org/10.1021/acs.biomac.7b01209
Hong Y. X.; Xi Y. J.; Zhang J. X.; Wang D. D.; Zhang H. L.; Yan N.; He S. S.; Du J. Z. Polymersome-hydrogel composites with combined quick and long-term antibacterial activities. J. Mater. Chem. B, 2018, 6(39), 6311-6321. doi:10.1039/c8tb01608ahttp://dx.doi.org/10.1039/c8tb01608a
Zhang C.; Zhu Y. Q.; Zhou C. C.; Yuan W. Z.; Du J. Z. Antibacterial vesicles by direct dissolution of a block copolymer in water. Polym. Chem., 2013, 4(2), 255-259. doi:10.1039/c2py20719bhttp://dx.doi.org/10.1039/c2py20719b
陈思亲, 周泉, 相佳佳, 周珠贤, 唐建斌, 申有青. 酶响应的树枝状大分子键合物在体外肿瘤模型中的渗透行为研究. 高分子学报, 2021, 52(5), 477-488. doi:10.11777/j.issn1000-3304.2020.20257http://dx.doi.org/10.11777/j.issn1000-3304.2020.20257
姜中雨, 冯祥汝, 许维国, 庄秀丽, 丁建勋, 陈学思. 磷酸钙固化聚(L-谷氨酸)-顺铂/三氧化二砷纳米团簇协同治疗腹腔转移卵巢癌. 高分子学报, 2020, 51(8), 901-910. doi:10.11777/j.issn1000-3304.2020.20053http://dx.doi.org/10.11777/j.issn1000-3304.2020.20053
Wang Y. S.; Li G. L.; Zhu S. B.; Jing F. C.; Liu R. D.; Li S. S.; He J.; Lei J. D. A self-assembled nanoparticle platform based on amphiphilic oleanolic acid polyprodrug for cancer therapy. Chinese J. Polym. Sci., 2020, 38(8), 819-829. doi:10.1007/s10118-020-2401-2http://dx.doi.org/10.1007/s10118-020-2401-2
Ahmad S. S.; Reinius M. A.; Hatcher H. M.; Ajithkumar T. V. Anticancer chemotherapy in teenagers and young adults: managing long term side effects. BMJ, 2016, 354, i4567. doi:10.1136/bmj.i4567http://dx.doi.org/10.1136/bmj.i4567
Wang F.; Xiao J. G.; Chen S.; Sun H.; Yang B.; Jiang J. H.; Zhou X.; Du J. Z. Polymer vesicles: modular platforms for cancer theranostics. Adv. Mater., 2018, 30(17), 1705674. doi:10.1002/adma.201705674http://dx.doi.org/10.1002/adma.201705674
Liu Q. M.; Zhu H. S.; Qin J. Y.; Dong H. Q.; Du J. Z. Theranostic vesicles based on bovine serum albumin and poly(ethylene glycol)-block-poly(L-lactic-co-glycolic acid) for magnetic resonance imaging and anticancer drug delivery. Biomacromolecules, 2014, 15(5), 1586-1592. doi:10.1021/bm500438xhttp://dx.doi.org/10.1021/bm500438x
Qin J. Y.; Liu Q. M.; Zhang J. X.; Chen J.; Chen S.; Zhao Y.; Du J. Z. Rationally separating the corona and membrane functions of polymer vesicles for enhanced T2 MRI and drug delivery. ACS Appl. Mater. Interfaces, 2015, 7(25), 14043-14052. doi:10.1021/acsami.5b03222http://dx.doi.org/10.1021/acsami.5b03222
Chen J.; Liu Q. M.; Xiao J. G.; Du J. Z. EpCAM-antibody-labeled noncytotoxic polymer vesicles for cancer stem cells-targeted delivery of anticancer drug and siRNA. Biomacromolecules, 2015, 16(6), 1695-1705. doi:10.1021/acs.biomac.5b00551http://dx.doi.org/10.1021/acs.biomac.5b00551
Liu Q. M.; Song L. W.; Chen S.; Gao J. Y.; Zhao P. Y.; Du J. Z. A superparamagnetic polymersome with extremely high T2 relaxivity for MRI and cancer-targeted drug delivery. Biomaterials, 2017, 114, 23-33. doi:10.1016/j.biomaterials.2016.10.027http://dx.doi.org/10.1016/j.biomaterials.2016.10.027
潘烁炯, 许华平. 活性氧响应含碲高分子. 高分子学报, 2021, 52(8), 857-866. doi:10.11777/j.issn1000-3304.2021.21058http://dx.doi.org/10.11777/j.issn1000-3304.2021.21058
Yang B.; Du J. Z. Ultrasound-responsive homopolymer nanoparticles. Chinese J. Polym. Sci., 2020, 38(4), 349-356. doi:10.1007/s10118-020-2345-6http://dx.doi.org/10.1007/s10118-020-2345-6
Yang B.; Du J. Z. On the origin and regulation of ultrasound responsiveness of block copolymer nanoparticles. Sci. China Chem., 2020, 63(2), 272-281. doi:10.1007/s11426-019-9612-8http://dx.doi.org/10.1007/s11426-019-9612-8
Zhou X.; Yan N.; Cornel E. J.; Cai H. D.; Xue S. B.; Xi H.; Fan Z.; He S. S.; Du J. Z. Bone-targeting polymer vesicles for simultaneous imaging and effective malignant bone tumor treatment. Biomaterials, 2021, 269, 120345. doi:10.1016/j.biomaterials.2020.120345http://dx.doi.org/10.1016/j.biomaterials.2020.120345
Zhou X.; Cornel E. J.; Fan Z.; He S. S.; Du J. Z. Bone-targeting polymer vesicles for effective therapy of osteoporosis. Nano Lett., 2021, 21(19), 7998-8007. doi:10.1021/acs.nanolett.1c02150http://dx.doi.org/10.1021/acs.nanolett.1c02150
Knop K.; Hoogenboom R.; Fischer D.; Schubert U. S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed Engl., 2010, 49(36), 6288-6308. doi:10.1002/anie.200902672http://dx.doi.org/10.1002/anie.200902672
Markovsky E.; Baabur-Cohen H.; Eldar-Boock A.; Omer L.; Tiram G.; Ferber S.; Ofek P.; Polyak D.; Scomparin A.; Satchi-Fainaro R. Administration, distribution, metabolism and elimination of polymer therapeutics. J. Control. Release, 2012, 161(2), 446-460. doi:10.1016/j.jconrel.2011.12.021http://dx.doi.org/10.1016/j.jconrel.2011.12.021
0
Views
98
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution