浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 中国科学院生态环境高分子材料重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
You-hua Tao, E-mail: youhua.tao@ciac.ac.cn
Published:20 March 2023,
Published Online:10 October 2022,
Received:07 August 2022,
Accepted:05 September 2022
扫 描 看 全 文
汤家栋,李茂盛,陶友华.Lewis酸碱对催化的可再生环状缩醛酯单体的开环聚合研究[J].高分子学报,2023,54(03):356-364.
Tang Jia-dong,Li Mao-sheng,Tao You-hua.Lewis Pair-catalyzed Ring-opening Polymerization of Renewable Cyclic Acetal Ester Monomers[J].ACTA POLYMERICA SINICA,2023,54(03):356-364.
汤家栋,李茂盛,陶友华.Lewis酸碱对催化的可再生环状缩醛酯单体的开环聚合研究[J].高分子学报,2023,54(03):356-364. DOI: 10.11777/j.issn1000-3304.2022.22271.
Tang Jia-dong,Li Mao-sheng,Tao You-hua.Lewis Pair-catalyzed Ring-opening Polymerization of Renewable Cyclic Acetal Ester Monomers[J].ACTA POLYMERICA SINICA,2023,54(03):356-364. DOI: 10.11777/j.issn1000-3304.2022.22271.
从生物质原料3
4-二氢吡喃出发,合成了可再生环状缩醛酯单体(H-AE),从结构上看,该单体在
γ
-丁内酯中引入了缩醛单元,在开环聚合过程中,通过释放甲醛分子有希望在温和条件下得到聚(
γ
-丁内酯). 选用合适的Lewis酸碱对催化剂,基本抑制了聚合过程中的链回咬副反应,实现了单体的可控聚合. 详细研究了催化剂的酸/碱性强度及其位阻大小对于合成的聚合物的组成和比例的影响,通过设计和优化催化剂的结构,实现了聚合物中聚丁内酯单元和聚缩醛酯单元比例的调控. 对所得聚合物进行了
1
H-NMR、
13
C-NMR及扩散排序核磁共振(DOSY)表征,结合聚合过程的核磁与SEC监测,证实所得聚合物为丁内酯与缩醛酯的无规共聚物. 根据实验数据和表征结果,推测聚合遵循Lewis酸碱对调控的阴离子开环聚合机理,酸碱催化剂共同稳定活性链末端,实现了亲核进攻和甲醛的脱除.
A seven-membered cyclic acetal ester monomer (H-AE) was synthesized from biomass-based 3
4-dihydropyran. Structurally
this monomer introduces an acetal unit into
γ
-butyrolactone
which promises to afford poly(
γ
-butyrolactone) under mild conditions by releasing formaldehyde molecules during ring-opening polymerization. The judicious choice of Lewis pair catalysts substantially inhibits the back-biting side reactions during the polymerization process and realizes the entropy driven polymerization. We carefully studied the effects of the acid/basicity and the steric hindrance of the catalyst on the composition of the synthesized polymers. By designing and optimizing the catalyst structure
regulation of the ratio of poly(
γ
-butyrolactone) and poly(acetal esters) units was realized. With the help of NMR and SEC characterization of the polymer and the polymerization process
we confirmed that the obtained polymer is a random copolymer of poly(
γ
-butyrolactone) and poly(acetal ester). Finally
based on the experimental data and characterization results
we speculate that the polymerization follows the Lewis-pair mediated anionic ring-opening polymerization mechanism. Lewis acid and Lewis base act together on the active anion chain end to afford appropriate affinity and supress the back-bite side reaction while ensuring the release of formaldehyde.
开环聚合Lewis酸碱对环状缩醛酯聚(γ-丁内酯)
Ring-opening polymerizationLewis pairCyclic acetal esterPoly(γ-butyrolactone)
Kamber N. E.; Jeong W.; Waymouth R. M.; Pratt R. C.; Lohmeijer B. G.; Hedrick J. L. Organocatalytic ring-opening polymerization. Chem. Rev., 2007, 107, 5813-5840. doi:10.1021/cr068415bhttp://dx.doi.org/10.1021/cr068415b
Li M.; Tao Y.; Tang J.; Wang Y.; Zhang X.; Tao Y.; Wang X. Synergetic organocatalysis for eliminating epimerization in ring-opening polymerizations enables synthesis of stereoregular isotactic polyester. J. Am. Chem. Soc., 2019, 141, 281-289. doi:10.1021/jacs.8b09739http://dx.doi.org/10.1021/jacs.8b09739
Wang J.; Tao Y. Synthesis of sustainable polyesters via organocatalytic ring-opening polymerization of O-carboxyanhydrides: advances and perspectives. Macromol. Rapid Commun., 2021, 42, e2000535. doi:10.1002/marc.202000535http://dx.doi.org/10.1002/marc.202000535
Zhou T.; Guo Y. T.; Du F. S.; Li Z. C. Ring-opening polymerization of 2-oxabicyclo[2.2.2]octan-3-one and the influence of stereochemistry on the thermal properties of the polyesters. Chinese J. Polym. Sci., 2022, 40(10), 1173-1182. doi:10.1007/s10118-022-2725-1http://dx.doi.org/10.1007/s10118-022-2725-1
Lian J. W.; Chen J. L.; Luan S. F.; Liu W.; Zong B. N.; Tao Y. H.; Wang X. H. Organocatalytic copolymerization of cyclic lysine derivative and ε-caprolactam toward antibacterial nylon-6 polymers. ACS Macro. Lett., 2022, 11, 46-52. doi:10.1021/acsmacrolett.1c00658http://dx.doi.org/10.1021/acsmacrolett.1c00658
Chen J. L.; Dong Y. L.; Xiao C. S.; Tao Y. H.; Wang X. H. Organocatalyzed ring-opening polymerization of cyclic lysine derivative: sustainable access to cationic poly(epsilon-lysine) mimics. Macromolecules, 2021, 54, 2226-2231. doi:10.1021/acs.macromol.0c02689http://dx.doi.org/10.1021/acs.macromol.0c02689
Wang Y.; Li M.; Chen J.; Tao Y.; Wang X. O-to-S substitution enables dovetailing conflicting cyclizability, polymerizability, and recyclability: dithiolactone vs. Dilactone. Angew. Chem. Int. Ed., 2021, 60, 22547-22553. doi:10.1002/anie.202109767http://dx.doi.org/10.1002/anie.202109767
Yuan P.; Sun Y.; Xu X.; Luo Y.; Hong M. Towards high-performance sustainable polymers via isomerization-driven irreversible ring-opening polymerization of five-membered thionolactones. Nat. Chem., 2022, 14(3), 294-303. doi:10.1038/s41557-021-00817-9http://dx.doi.org/10.1038/s41557-021-00817-9
Abel B. A.; Snyder R. L.; Coates G. W. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science, 2021, 373, 783-789. doi:10.1126/science.abh0626http://dx.doi.org/10.1126/science.abh0626
Qiu H.; Yang Z.; Köhler M.; Ling J.; Schacher F. H. Synthesis and solution self-assembly of poly(1,3-dioxolane). Macromolecules, 2019, 52, 3359-3366. doi:10.1021/acs.macromol.9b00302http://dx.doi.org/10.1021/acs.macromol.9b00302
安泽胜, 陈昶乐, 何军坡, 洪春雁, 李志波, 李子臣, 刘超, 吕小兵, 秦安军, 曲程科, 唐本忠, 陶友华, 宛新华, 王国伟, 王佳, 郑轲, 邹文凯. 中国高分子合成化学的研究与发展动态. 高分子学报, 2019, 50, 1083-1132. doi:10.11777/j.issn1000-3304.2019.19136http://dx.doi.org/10.11777/j.issn1000-3304.2019.19136
陈学思, 陈国强, 陶友华, 王玉忠, 吕小兵, 张立群, 朱锦, 张军, 王献红. 生态环境高分子的研究进展. 高分子学报, 2019, 50, 1068-1082. doi:10.11777/j.issn1000-3304.2019.19124http://dx.doi.org/10.11777/j.issn1000-3304.2019.19124
袁鹏俊, 洪缪. “非张力环”γ-丁内酯及其衍生物开环聚合的研究进展. 高分子学报, 2019, 50, 327-337. doi:10.11777/j.issn1000-33042018.18232http://dx.doi.org/10.11777/j.issn1000-33042018.18232
Houk K. N.; Jabbari A.; Hall H. K.; Alemán C. Why δ-valerolactone polymerizes and γ-butyrolactone does not. J. Org. Chem., 2008, 73, 2674-2678. doi:10.1021/jo702567vhttp://dx.doi.org/10.1021/jo702567v
Hong M.; Chen E. Y. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nat. Chem., 2016, 8, 42-49. doi:10.1038/nchem.2391http://dx.doi.org/10.1038/nchem.2391
Zhao N.; Ren C.; Li H.; Li Y.; Liu S.; Li Z. Selective ring-opening polymerization of non-strained γ-butyrolactone catalyzed by a cyclic trimeric phosphazene base. Angew. Chem. Int. Ed. Engl., 2017, 56, 12987-12990. doi:10.1002/anie.201707122http://dx.doi.org/10.1002/anie.201707122
Zhang C. J.; Hu L. F.; Wu H. L.; Cao X. H.; Zhang X. H. Dual organocatalysts for highly active and selective synthesis of linear poly(γ-butyrolactone)s with high molecular weights. Macromolecules, 2018, 51, 8705-8711. doi:10.1021/acs.macromol.8b01757http://dx.doi.org/10.1021/acs.macromol.8b01757
Lin L.; Han D.; Qin J.; Wang S.; Xiao M.; Sun L.; Meng Y. Nonstrained γ-butyrolactone to high-molecular-weight poly(γ-butyrolactone): facile bulk polymerization using economical ureas/alkoxides. Macromolecules, 2018, 51, 9317-9322. doi:10.1021/acs.macromol.8b01860http://dx.doi.org/10.1021/acs.macromol.8b01860
Li M. S.; Zhang S.; Zhang X. Y.; Wang Y. C.; Chen J. L.; Tao Y. H.; Wang X. H. Unimolecular anion-binding catalysts for selective ring-opening polymerization of O-carboxyanhydrides. Angew. Chem. Int. Ed., 2021, 60, 6003-6012. doi:10.1002/anie.202011352http://dx.doi.org/10.1002/anie.202011352
Wu Y.; Zhang D.; Ma P.; Zhou R.; Hua L.; Liu R. Lithium hexamethyldisilazide initiated superfast ring opening polymerization of α-amino acid N-carboxyanhydrides. Nat. Commun., 2018, 9, 5297. doi:10.1038/s41467-018-07711-yhttp://dx.doi.org/10.1038/s41467-018-07711-y
Yuan J.; Zhang Y.; Li Z.; Wang Y.; Lu H. A S-Sn Lewis pair-mediated ring-opening polymerization of α-amino acid N-carboxyanhydrides: fast kinetics, high molecular weight, and facile bioconjugation. ACS Macro. Lett., 2018, 7, 892-897. doi:10.1021/acsmacrolett.8b00465http://dx.doi.org/10.1021/acsmacrolett.8b00465
He W.; Tao Y. Bifunctional fluoroalcohol catalysts enabled sustainable synthesis of poly(amino acid)s. Chin. J. Chem., 2021, 39, 2119-2124. doi:10.1002/cjoc.202100205http://dx.doi.org/10.1002/cjoc.202100205
Song Z.; Tan Z.; Cheng J. Recent advances and future perspectives of synthetic polypeptides from N-carboxyanhydrides. Macromolecules, 2019, 52, 8521-8539. doi:10.1021/acs.macromol.9b01450http://dx.doi.org/10.1021/acs.macromol.9b01450
Wu Y.; Chen K.; Wu X.; Liu L.; Zhang W.; Ding Y.; Liu S.; Zhou M.; Shao N.; Ji Z.; Chen J.; Zhu M.; Liu R. Superfast and water-insensitive polymerization on α-amino acid N-carboxyanhydrides to prepare polypeptides using tetraalkylammonium carboxylate as the initiator. Angew. Chem. Int. Ed. Engl., 2021, 60, 26063-26071. doi:10.1002/anie.202103540http://dx.doi.org/10.1002/anie.202103540
Wang Y.; Li M.; Wang S.; Tao Y.; Wang X. S-carboxyanhydrides: ultrafast and selective ring-opening polymerizations towards well-defined functionalized polythioesters. Angew. Chem. Int. Ed. Engl., 2021, 60, 10798-10805. doi:10.1002/anie.202016228http://dx.doi.org/10.1002/anie.202016228
Bannin T. J.; Kiesewetter M. K. Poly(thioester) by organocatalytic ring-opening polymerization. Macromolecules, 2015, 48, 5481-5486. doi:10.1021/acs.macromol.5b01463http://dx.doi.org/10.1021/acs.macromol.5b01463
Suzuki M.; Makimura K.; Matsuoka S. I. Thiol-mediated controlled ring-opening polymerization of cysteine-derived β‑thiolactone and unique features of product polythioester. Biomacromolecules, 2016, 17, 1135-1141. doi:10.1021/acs.biomac.5b01748http://dx.doi.org/10.1021/acs.biomac.5b01748
McGraw M. L.; Chen E. Y. X. Lewis pair polymerization: perspective on a ten-year journey. Macromolecules, 2020, 53, 6102-6122. doi:10.1021/acs.macromol.0c01156http://dx.doi.org/10.1021/acs.macromol.0c01156
宋艳娇, 何江华, 张越涛. 基于氮杂环烯烃的Lewis酸碱对催化二氢香豆素基聚酯合成的机理研究. 高分子学报, 2022, 53(9): 1112-1122. doi:10.11777/j.issn1000-3304.2022.22111http://dx.doi.org/10.11777/j.issn1000-3304.2022.22111
Wang Q.; Zhao W.; He J.; Zhang Y.; Chen E. Y. X. Living ring-opening polymerization of lactones by N-heterocyclic olefin/Al(C6F5)3 pairslewis: Structures of intermediates, kinetics, and mechanism. Macromolecules, 2017, 50, 123-136.
Bai Y.; Wang H.; He J.; Zhang Y. Rapid and scalable access to sequence-controlled DHDM multiblock copolymers by FLP polymerization. Angew. Chem. Int. Ed. Engl., 2020, 59, 11613-11619. doi:10.1002/anie.202004013http://dx.doi.org/10.1002/anie.202004013
Zhao W.; Li F.; Li C.; He J.; Zhang Y.; Chen C. Lewis pair catalyzed regioselective polymerization of (E,E)-alkyl sorbates for the synthesis of (AB)n sequenced polymers. Angew. Chem. Int. Ed. Engl., 2021, 60, 24306-24311. doi:10.1002/anie.202111336http://dx.doi.org/10.1002/anie.202111336
白云, 张越涛. Lewis酸碱对催化极性乙烯基单体聚合. 高分子学报, 2019, 50, 233-246. doi:10.11777/j.issn1000-3304.2019.18269http://dx.doi.org/10.11777/j.issn1000-3304.2019.18269
Bai Y.; Wang H.; He J.; Zhang Y.; Chen E. Y. X. Dual-initiating and living frustrated lewis pairs: expeditious synthesis of biobased thermoplastic elastomers. Nat. Commun., 2021, 12, 4874. doi:10.1038/s41467-021-25069-6http://dx.doi.org/10.1038/s41467-021-25069-6
Bai Y.; Wang H.; He J.; Zhang Y. Living polymerization of naturally renewable butyrolactone-based vinylidenes mediated by a frustrated lewis pair. Polym. Chem., 2021, 12, 5548-5555. doi:10.1039/d1py00924ahttp://dx.doi.org/10.1039/d1py00924a
Wan Y.; He J.; Zhang Y.; Chen E. Y. X. One-step synthesis of lignin-based triblock copolymers as high-temperature and UV-blocking thermoplastic elastomers. Angew. Chem. Int. Ed. Engl., 2022, 61, e202114946. doi:10.1002/anie.202114946http://dx.doi.org/10.1002/anie.202114946
Stapleton R. A.; Al-Humydi A.; Chai J.; Galan B. R.; Collins S. Sterically hindered aluminum alkyls: weakly interacting scavenging agents of use in olefin polymerization. Organometallics, 2006, 25, 5083-5092. doi:10.1021/om060474shttp://dx.doi.org/10.1021/om060474s
Lu X. B.; Ren B. H. Partners in epoxide copolymerization catalysis: approach to high activity and selectivity. Chinese J. Polym. Sci., 2022, 40(11), 1331-1348. doi:10.1007/s10118-022-2744-yhttp://dx.doi.org/10.1007/s10118-022-2744-y
Hormnirun P.; Marshall E. L.; Gibson V. C.; Pugh R. I.; White A. J. P. Study of ligand substituent effects on the rate and stereoselectivity of lactide polymerization using aluminum salen-type initiators. Proc. Natl. Acad. Sci. USA, 2006, 103, 15343-15348. doi:10.1073/pnas.0602765103http://dx.doi.org/10.1073/pnas.0602765103
0
Views
109
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution