浏览全部资源
扫码关注微信
1.南京大学化学化工学院 南京 210023
2.国家自然科学基金委员会化学部 北京 100085
Fei-xue Gao, E-mail: gaofx@nsfc.gov.cn
Published:20 January 2023,
Published Online:11 October 2022,
Received:15 August 2022,
Accepted:05 September 2022
扫 描 看 全 文
胡文兵,沈祥建,高飞雪.软物质非平衡体系的挑战和机遇[J].高分子学报,2023,54(01):65-77.
Hu Wen-bing,Shen Xiang-jian,Gao Fei-xue.Challenges and Opportunities of Non-equilibrium System of Soft Matter[J].ACTA POLYMERICA SINICA,2023,54(01):65-77.
胡文兵,沈祥建,高飞雪.软物质非平衡体系的挑战和机遇[J].高分子学报,2023,54(01):65-77. DOI: 10.11777/j.issn1000-3304.2022.22280.
Hu Wen-bing,Shen Xiang-jian,Gao Fei-xue.Challenges and Opportunities of Non-equilibrium System of Soft Matter[J].ACTA POLYMERICA SINICA,2023,54(01):65-77. DOI: 10.11777/j.issn1000-3304.2022.22280.
总结了国家自然科学基金委员会化学科学部组织召开的“软物质非平衡体系的挑战和机遇”学科发展战略高层论坛学术交流内容. 首先概述了软物质非平衡体系的主要物理化学特点,随后阐述了其在国际学术前沿所面临的重要挑战,最后介绍了当前我国在化学、物理和数学等基础研究领域所取得的相关研究进展及一些创新性交叉研究成果,探讨了如何面向生命科学和材料科学未来的发展方向,更好地发挥化学、物理和数学等基础学科交叉集成的引领作用. 同时,为了满足我国国民经济发展所面临的重大技术需求,凝练了软物质非平衡体系研究领域未来5~10年的关键科学问题,提出了加强科学基金资助的战略性建议.
This article has summarized the main academic ideas from the forum titled as "Challenges and Opportunities on the Nonequilibrium Systems of Soft Matter" which has been organized by National Natural Science Foundation of China (NSFC) in Beijing on Oct. 24
2021. Firstly
the main physical and chemical properties of nonequilibrium systems of soft matter are summarized. The important challenges at the international academic frontiers are then expounded. And some relevant progresses and innovative research achievements are introduced in the fundamental research fields of chemistry
physics and mathematics in China. The importance of how to develop between life sciences and materials sciences the leading roles of chemistry
physics
and mathematics into these new research directions and fields were mainly discussed. At the same time
in order to meet the major technical needs in Chinese future developments
some key scientific issues in the field of nonequilibrium systems of soft matter were suggested for the next 5-10 years
and some strategic suggestions for strengthening the support of NSFC were proposed.
软物质非平衡体系生命体系材料科学学科交叉
Soft matterNonequilibrium systemLife systemMaterials scienceInterdisciplinary
de Gennes P. G. Nobel lecture: the Nobel Prize in physics 1991. https://www.nobelprize.org/prizes/physics/1991/press-release/
欧阳钟灿. 《中国大百科全书》 74卷(第二版)物理学词条. 北京: 中国大百科全书出版社, 2009. 389-390.
国家自然科学基金委员会, 中国科学院. 中国学科发展战略.软凝聚态物理学. 北京: 科学出版社, 2020.
Conard, J. C. Division of Soft Matter. https://engage.aps.org/dsoft/homehttps://engage.aps.org/dsoft/home. doi:10.1103/aps.dfd.2019.gfm.p0036http://dx.doi.org/10.1103/aps.dfd.2019.gfm.p0036
Crosby, A. Soft matter. https://www.rsc.org/journals-books-databases/about-journals/soft-matterhttps://www.rsc.org/journals-books-databases/about-journals/soft-matter. doi:10.1039/c0sm90040khttp://dx.doi.org/10.1039/c0sm90040k
Uversky V. Protein folding, misfolding and aggregation: classical themes and novel approaches. edited by Victor Muñoz. ChemBioChem, 2008, 9(16), 2750-2751. doi:10.1002/cbic.200800645http://dx.doi.org/10.1002/cbic.200800645
唐敖庆.分子内旋转问题. 化学学报, 1954, 20(1), 46-67.
Volkenstein M. V. Configurational Statistics of Polymeric Chains. New York: Interscience, 1963. doi:10.1002/pol.1958.1202912012http://dx.doi.org/10.1002/pol.1958.1202912012
Flory P. J.; Volkenstein M. Statistical mechanics of chain molecules. Biopolymers, 1969, 8(5), 699-700. doi:10.1002/bip.1969.360080514http://dx.doi.org/10.1002/bip.1969.360080514
The Nobel Prize in Chemistry. https://www.nobelprize. org/prizes/chemistry/1974/summary/https://www.nobelprize.org/prizes/chemistry/1974/summary/. doi:10.1142/9789812775566_0007http://dx.doi.org/10.1142/9789812775566_0007
Onsager L. The effects of shape on the interaction of colloidal particles. Ann. N Y Acad. Sci., 1949, 51(4), 627-659. doi:10.1111/j.1749-6632.1949.tb27296.xhttp://dx.doi.org/10.1111/j.1749-6632.1949.tb27296.x
Hu W. Polymer Physics: A Molecular Approach. New York: Springer Science & Business Media, 2012.
Han C. C.; Akcasu A. Z. Scattering and Dynamics of Polymers: Seeking Order in Disordered Systems. 1. Aufl. Singapore: Wiley, 2011. 1-319. doi:10.1002/9780470824849http://dx.doi.org/10.1002/9780470824849
Mai Y. Y.; Eisenberg A. Self-assembly of block copolymers. Chem. Soc. Rev., 2012, 41(18), 5969-5985. doi:10.1039/c2cs35115chttp://dx.doi.org/10.1039/c2cs35115c
Anderson P. W. More is different: Broken symmetry and the nature of the hierarchical structure of science. Science, 1972, 177, 393-396. doi:10.1126/science.177.4047.393http://dx.doi.org/10.1126/science.177.4047.393
Pottier N. Nonequilibrium Statistical Physics: Linear Irreversible Processes. Oxford: Oxford University Press, 2009. doi:10.1007/s10955-010-0114-6http://dx.doi.org/10.1007/s10955-010-0114-6
Gibbs J. W. On the equilibrium of heterogeneous substances. Am. J. Sci., 1878, 3, 441-458. doi:10.2475/ajs.s3-16.96.441http://dx.doi.org/10.2475/ajs.s3-16.96.441
Legras R.; Mercier J. P.; Nield E. Polymer crystallization by chemical nucleation. Nature, 1983, 304(5925), 432-434. doi:10.1038/304432a0http://dx.doi.org/10.1038/304432a0
Eisenberg D.; Jucker M. The amyloid state of proteins in human diseases. Cell, 2012, 148(6), 1188-1203. doi:10.1016/j.cell.2012.02.022http://dx.doi.org/10.1016/j.cell.2012.02.022
Ruan Y. J.; Lu Y. Y.; An L. J.; Wang Z. G. Nonlinear rheological behaviors in polymer melts after step shear. Macromolecules, 2019, 52(11), 4103-4110. doi:10.1021/acs.macromol.9b00392http://dx.doi.org/10.1021/acs.macromol.9b00392
Ruan Y. J.; Lu Y. Y.; An L. J.; Wang Z. G. Shear banding in entangled polymers: stress plateau, banding location, and lever rule. ACS Macro Lett., 2021, 10(12), 1517-1523. doi:10.1021/acsmacrolett.1c00518http://dx.doi.org/10.1021/acsmacrolett.1c00518
Haken, H. Synergetics: an introduction: nonequilibrium phase transitions and self-organization in physics, chemistry, and biology. 3rd rev. and enl. ed. New York: Springer, 1983.
胡文兵. 高分子结晶学原理. 北京: 化学工业出版社, 2015.
Hu W. B. The physics of polymer chain-folding. Phys. Rep., 2018, 747, 1-50. doi:10.1016/j.physrep.2018.04.004http://dx.doi.org/10.1016/j.physrep.2018.04.004
燕立唐. 软物质体系的熵调控. 北京: 龙门书局, 2021.
Doi, M. Soft Matter Physics. Oxford: Oxford University Press USA, 2013. doi:10.1093/acprof:oso/9780199652952.003.0002http://dx.doi.org/10.1093/acprof:oso/9780199652952.003.0002
Lu Y.; Shi T. F.; An L.; Wang Z. G. Intrinsic viscosity of polymers: from linear chains to dendrimers. EPL Europhys. Lett., 2012, 97(6): 64003. doi:10.1209/0295-5075/97/64003http://dx.doi.org/10.1209/0295-5075/97/64003
Lu Y. Y.; An L. J.; Wang Z. G. Intrinsic viscosity of polymers: general theory based on a partially permeable sphere model. Macromolecules, 2013, 46(14), 5731-5740. doi:10.1021/ma400872shttp://dx.doi.org/10.1021/ma400872s
Wang Z. H.; Zhai Q. L.; Chen W.; Wang X. L.; Lu Y. Y.; An L. J. Mechanism of nonmonotonic increase in polymer size: comparison between linear and ring chains at high shear rates. Macromolecules, 2019, 52(21), 8144-8154. doi:10.1021/acs.macromol.9b00809http://dx.doi.org/10.1021/acs.macromol.9b00809
An L. J.; He D. Y.; Jing J. K.; Wang Z. G.; Yu D. H.; Jiang B. Z.; Jiang Z. H.; Ma R. T. Effects of molecular weight and interaction parameter on the glass transition temperature of polystyrene mixtures and its blends with polystyrene/poly(2,6-dimethyl-p-phenylene oxide). Eur. Polym. J., 1997, 33(9), 1523-1528.
Mei B. C.; Lu Y. Y.; An L. J.; Li H. F.; Wang L. Nonmonotonic dynamic correlations in quasi-two-dimensional confined glass-forming liquids. Phys. Rev. E, 2017, 95(5-1), 050601. doi:10.1103/physreve.95.050601http://dx.doi.org/10.1103/physreve.95.050601
Mei B. C.; Lu Y. Y.; An L. J.; Wang Z. G. Two-step relaxation and the breakdown of the Stokes-Einstein relation in glass-forming liquids. Phys. Rev. E, 2019, 100(5-1), 052607. doi:10.1103/physreve.100.052607http://dx.doi.org/10.1103/physreve.100.052607
Li W. H.; Wickham R. A.; Garbary R. A. Phase diagram for a diblock copolymer melt under cylindrical confinement. Macromolecules, 2006, 39(2), 806-811. doi:10.1021/ma052151yhttp://dx.doi.org/10.1021/ma052151y
Li W. H.; Qiu F.; Shi A. C. Emergence and stability of helical superstructures in ABC triblock copolymers. Macromolecules, 2012, 45(1), 503-509. doi:10.1021/ma2023952http://dx.doi.org/10.1021/ma2023952
Xie N.; Liu M. J.; Deng H. L.; Li W. H.; Qiu F.; Shi A. C. Macromolecular metallurgy of binary mesocrystals via designed multiblock terpolymers. J. Am. Chem. Soc., 2014, 136(8), 2974-2977. doi:10.1021/ja412760khttp://dx.doi.org/10.1021/ja412760k
Gao Y.; Deng H. L.; Li W. H.; Qiu F.; Shi A. C. Formation of nonclassical ordered phases of AB-type multiarm block copolymers. Phys. Rev. Lett., 2016, 116(6), 068304. doi:10.1103/physrevlett.116.068304http://dx.doi.org/10.1103/physrevlett.116.068304
Shi A. C.; Li B. H. Self-assembly of diblock copolymers under confinement. Soft Matter, 2013, 9(5), 1398-1413. doi:10.1039/c2sm27031ehttp://dx.doi.org/10.1039/c2sm27031e
Kong W. X.; Li B. H.; Jin Q. H.; Ding D. T.; Shi A. C. Helical vesicles, segmented semivesicles, and noncircular bilayer sheets from solution-state self-assembly of ABC miktoarm star terpolymers. J. Am. Chem. Soc., 2009, 131(24), 8503-8512. doi:10.1021/ja900405rhttp://dx.doi.org/10.1021/ja900405r
Yu B.; Sun P. C.; Chen T. H.; Jin Q. H.; Ding D. T.; Li B. H.; Shi A. C. Confinement-induced novel morphologies of block copolymers. Phys.Rev. Lett., 2006, 96(13), 138306. doi:10.1103/physrevlett.96.138306http://dx.doi.org/10.1103/physrevlett.96.138306
Huang C.; Zhu Y.; Man X. Block copolymer thin films. Phys. Rep., 2021, 932, 1-36. doi:10.1016/j.physrep.2021.07.005http://dx.doi.org/10.1016/j.physrep.2021.07.005
Liu B.; Tong C. H.; Yang Y. L. The kinetics and phase patterns in a ternary mixture coupled with chemical reaction of A + B C. J. Phys. Chem. B, 2001, 105(41), 10091-10100. doi:10.1021/jp011536phttp://dx.doi.org/10.1021/jp011536p
Tang P.; Qiu F.; Zhang H. D.; Yang Y. L. Phase separation patterns for diblock copolymers on spherical surfaces: a finite volume method. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2005, 72(1-2), 016710. doi:10.1103/physreve.72.016710http://dx.doi.org/10.1103/physreve.72.016710
Xiao K.; Chen X.; Wu C. X. Electric field-triggered Cassie-Baxter-Wenzel wetting transition on textured surface. Phys. Rev. Res., 2021, 3(3), 033277. doi:10.1103/physrevresearch.3.033277http://dx.doi.org/10.1103/physrevresearch.3.033277
Xiao K.; Wu, C. X. Fréedericksz-like positional transition triggered by an external electric field. In: Liu, X. Y, ed. Frontiers and Progress of Current Soft Matter Research. Singapore: Springer Singapore, 2020. 323-352. doi:10.1007/978-981-15-9297-3_8http://dx.doi.org/10.1007/978-981-15-9297-3_8
Xiao K.; Wu C. X. Curvature effect of electrowetting-induced droplet detachment. J. Appl. Phys., 2021, 129(23), 234701. doi:10.1063/5.0054587http://dx.doi.org/10.1063/5.0054587
施夏清, 马余强. 活力物质的非平衡结构和动力学. 物理, 2012, 41(1): 31-38.
Shi X. Q.; Ma Y. Q. Effective attraction interactions between like-charge macroions bound to binary fluid lipid membranes. J. Chem. Phys., 2007, 126(12), 125101. doi:10.1063/1.2714512http://dx.doi.org/10.1063/1.2714512
Shi X. Q.; Ma Y. Q. Topological structure dynamics revealing collective evolution in active nematics. Nat. Commun., 2013, 4, 3013. doi:10.1038/ncomms4013http://dx.doi.org/10.1038/ncomms4013
Sun L. Y.; Yu Y. R.; Chen Z. Y.; Bian F. K.; Ye F. F.; Sun L. Y.; Zhao Y. J. Biohybrid robotics with living cell actuation. Chem. Soc. Rev., 2020, 49(12), 4043-4069. doi:10.1039/d0cs00120ahttp://dx.doi.org/10.1039/d0cs00120a
Yang Q.; Zhu H. W.; Liu P.; Liu R.; Shi Q. F.; Chen K.; Zheng N.; Ye F. F.; Yang M. C. Topologically protected transport of cargo in a chiral active fluid aided by odd-viscosity-enhanced depletion interactions. Phys. Rev. Lett., 2021, 126(19), 198001. doi:10.1103/physrevlett.126.198001http://dx.doi.org/10.1103/physrevlett.126.198001
Fan Q. H.; Zheng Y.; Wang X. C.; Xie R. P.; Ding Y.; Wang B. Y.; Yu X. Y.; Lu Y.; Liu L. Y.; Li Y. L.; Li M.; Zhao Y. J.; Jiao Y.; Ye F. F. Dynamically re-organized collagen fiber bundles transmit mechanical signals and induce strongly correlated cell migration and self-organization. Angew. Chem. Int. Ed. Engl., 2021, 60(21), 11858-11867. doi:10.1002/anie.202016084http://dx.doi.org/10.1002/anie.202016084
Cai L. J.; Wang H.; Yu Y. R.; Bian F. K.; Wang Y.; Shi K. Q.; Ye F. F.; Zhao Y. J. Stomatocyte structural color-barcode micromotors for multiplex assays. Natl. Sci. Rev., 2020, 7(3), 644-651. doi:10.1093/nsr/nwz185http://dx.doi.org/10.1093/nsr/nwz185
Meng F. L.; Bennett R. R.; Uchida N.; Golestanian R. Conditions for metachronal coordination in arrays of model cilia. Proc. Natl. Acad. Sci. USA, 2021, 118(32), e2102828118. doi:10.1073/pnas.2102828118http://dx.doi.org/10.1073/pnas.2102828118
Meng F. L.; Matsunaga D.; Mahault B.; Golestanian R. Magnetic microswimmers exhibit Bose-Einstein-like condensation. Phys. Rev. Lett., 2021, 126(7), 078001. doi:10.1103/physrevlett.126.078001http://dx.doi.org/10.1103/physrevlett.126.078001
Meng F. L.; Matsunaga D.; Golestanian R. Clustering of magnetic swimmers in a poiseuille flow. Phys. Rev. Lett., 2018, 120(18), 188101. doi:10.1103/physrevlett.120.188101http://dx.doi.org/10.1103/physrevlett.120.188101
The Nobel Prize in Physics 2021. https://www.nobelprize.org/prizes/physics/2021/press-release/https://www.nobelprize.org/prizes/physics/2021/press-release/. doi:10.1023/a:1010650624155http://dx.doi.org/10.1023/a:1010650624155
Laaksonen A.; Talanquer V.; Oxtoby D. W. Nucleation: measurements, theory, and atmospheric applications. Annu. Rev. Phys. Chem., 1995, 46, 489-524. doi:10.1146/annurev.pc.46.100195.002421http://dx.doi.org/10.1146/annurev.pc.46.100195.002421
Zhang L.; Chen L. Q.; Du Q. Morphology of critical nuclei in solid-state phase transformations. Phys. Rev. Lett., 2007, 98(26), 265703. doi:10.1103/physrevlett.98.265703http://dx.doi.org/10.1103/physrevlett.98.265703
Xu X. F.; Ting C. L.; Kusaka I.; Wang Z. G. Nucleation in polymers and soft matter. Annu. Rev. Phys. Chem., 2014, 65, 449-475. doi:10.1146/annurev-physchem-032511-143750http://dx.doi.org/10.1146/annurev-physchem-032511-143750
Samanta A.; Tuckerman M. E.; Yu T. Q.; Weinan E. Microscopic mechanisms of equilibrium melting of a solid. Science, 2014, 346(6210), 729-732. doi:10.1126/science.1253810http://dx.doi.org/10.1126/science.1253810
Cheng X. Y.; Lin L.; Weinan E.; Zhang P. W.; Shi A. C. Nucleation of ordered phases in block copolymers. Phys. Rev. Lett., 2010, 104(14), 148301. doi:10.1103/physrevlett.104.148301http://dx.doi.org/10.1103/physrevlett.104.148301
Yin J. Y.; Jiang K.; Shi A. C.; Zhang P. W.; Zhang L. Transition pathways connecting crystals and quasicrystals. Proc. Natl. Acad. Sci.USA, 2021, 118(49), e2106230118. doi:10.1073/pnas.2106230118http://dx.doi.org/10.1073/pnas.2106230118
Wang W. , Zhang L., Zhang P. W. Modeling and computation of liquid crystals. Acta Numerica, 2021, 30, 765-851. doi:10.1017/s0962492921000088http://dx.doi.org/10.1017/s0962492921000088
Zhang L.; Ren W. Q.; Samanta A.; Du Q. Recent developments in computational modelling of nucleation in phase transformations. Npj Comput. Mater., 2016, 2, 16003. doi:10.1038/npjcompumats.2016.3http://dx.doi.org/10.1038/npjcompumats.2016.3
Weinan E.; Vanden-Eijnden E. Transition-path theory and path-finding algorithms for the study of rare events. Annu. Rev. Phys. Chem., 2010, 61, 391-420. doi:10.1146/annurev.physchem.040808.090412http://dx.doi.org/10.1146/annurev.physchem.040808.090412
Xu X.; Wei Q. S.; Li H. P.; Wang Y. Z.; Chen Y. G.; Jiang Y. Recognition of polymer configurations by unsupervised learning. Phys. Rev. E, 2019, 99(4-1), 043307. doi:10.1103/physreve.99.043307http://dx.doi.org/10.1103/physreve.99.043307
Li J. F.; Zhang H. D.; Chen J. Z. Y. Structural prediction and inverse design by a strongly correlated neural network. Phys. Rev. Lett., 2019, 123(10), 108002. doi:10.1103/physrevlett.123.108002http://dx.doi.org/10.1103/physrevlett.123.108002
Wei X. F.; Zhou J. J.; Wang Y. T.; Meng F. L. Modeling elastically mediated liquid-liquid phase separation. Phys. Rev.Lett., 2020, 125(26), 268001. doi:10.1103/physrevlett.125.268001http://dx.doi.org/10.1103/physrevlett.125.268001
Ou-Yang Z. C.; Helfrich W. Instability and deformation of a spherical vesicle by pressure. Phys. Rev. Lett., 1987, 59(21), 2486-2488. doi:10.1103/physrevlett.59.2486http://dx.doi.org/10.1103/physrevlett.59.2486
Ou-Yang Z. C.; Helfrich W. Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A Gen. Phys., 1989, 39(10), 5280-5288. doi:10.1103/physreva.39.5280http://dx.doi.org/10.1103/physreva.39.5280
Yang K.; Ma Y. Q. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat. Nanotechnol., 2010, 5(8), 579-583. doi:10.1038/nnano.2010.141http://dx.doi.org/10.1038/nnano.2010.141
Lu X.; Xu P. P.; Ding H. M.; Yu Y. S.; Huo D.; Ma Y. Q. Tailoring the component of protein corona via simple chemistry. Nat. Commun., 2019, 10, 4520. doi:10.1038/s41467-019-12470-5http://dx.doi.org/10.1038/s41467-019-12470-5
Ding H. M.; Ma Y. Q. Computer simulation of the role of protein corona in cellular delivery of nanoparticles. Biomaterials, 2014, 35(30), 8703-8710. doi:10.1016/j.biomaterials.2014.06.033http://dx.doi.org/10.1016/j.biomaterials.2014.06.033
Chen J. F.; Zha L. Y.; Hu W. B. Effect of solvent selectivity on crystallization-driven fibril growth kinetics of diblock copolymers. Polymer, 2018, 138, 359-362. doi:10.1016/j.polymer.2018.01.074http://dx.doi.org/10.1016/j.polymer.2018.01.074
Chen P. Y.; Huang Z. H.; Liang J. S.; Cui T. Q.; Zhang X. H.; Miao B.; Yan L. T. Diffusion and directionality of charged nanoparticles on lipid bilayer membrane. ACS Nano, 2016, 10(12), 11541-11547. doi:10.1021/acsnano.6b07563http://dx.doi.org/10.1021/acsnano.6b07563
Chen P. Y.; Yue H.; Zhai X. B.; Huang Z. H.; Ma G. H.; Wei W.; Yan L. T. Transport of a graphene nanosheet sandwiched inside cell membranes. Sci. Adv., 2019, 5(6), eaaw3192. doi:10.1126/sciadv.aaw3192http://dx.doi.org/10.1126/sciadv.aaw3192
Zhu G. L.; Xu Z. Y.; Yan L. T. Entropy at bio-nano interfaces. Nano Lett., 2020, 20(8), 5616-5624. doi:10.1021/acs.nanolett.0c02635http://dx.doi.org/10.1021/acs.nanolett.0c02635
Chen P. Y.; Xu Z. Y.; Zhu G. L.; Dai X. B.; Yan L. T. Cellular uptake of active particles. Phys. Rev. Lett., 2020, 124(19): 198102. doi:10.1103/physrevlett.124.198102http://dx.doi.org/10.1103/physrevlett.124.198102
Ding H. M.; Li J.; Chen N.; Hu X. J.; Yang X. F.; Guo L. J.; Li Q.; Zuo X. L.; Wang L. H.; Ma Y. Q.; Fan C. H. DNA nanostructure-programmed like-charge attraction at the cell-membrane interface. ACS Cent. Sci., 2018, 4(10), 1344-1351. doi:10.1021/acscentsci.8b00383http://dx.doi.org/10.1021/acscentsci.8b00383
Jiang J. Non-monotonic effects of intrinsic stiffness and concentration of polyelectrolytes on the electro-sorption. Macromolecules, 2021, 54(4), 1801-1810. doi:10.1021/acs.macromol.0c02472http://dx.doi.org/10.1021/acs.macromol.0c02472
Shi X. Q.; Ma Y. Q. Understanding phase behavior of plant cell cortex microtubule organization. Proc. Natl. Acad. Sci. USA, 2010, 107(26), 11709-11714. doi:10.1073/pnas.1007138107http://dx.doi.org/10.1073/pnas.1007138107
Chen C.; Liu S.; Shi X. Q.; Chaté H.; Wu Y. L. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions. Nature, 2017, 542(7640), 210-214. doi:10.1038/nature20817http://dx.doi.org/10.1038/nature20817
Wang Z. F. , Dong X. , Liu G . M. , Xing Q. , Cavallo D. , Jiang Q. H. , Müller A. J. , Wang D. J. Interfacial nucleation in iPP/PB-1 blends promotes the formation of polybutene-1 trigonal crystals. Polymer, 2018, 138, 396-406. doi:10.1016/j.polymer.2018.01.078http://dx.doi.org/10.1016/j.polymer.2018.01.078
Wang Y.; Zhu P.; Lai Y.; Wang L.; Wang D.J.; Dong X. Effect of crosslinking networks on strain-induced crystallization in polyamide 1012 multiblock poly(tetramethylene oxide) copolymers. Polymer, 2021, 225, 123802. doi:10.1016/j.polymer.2021.123802http://dx.doi.org/10.1016/j.polymer.2021.123802
Cui K. P.; Ma Z.; Tian N.; Su F. M.; Liu D.; Li L. B. Multiscale and multistep ordering of flow-induced nucleation of polymers. Chem. Rev., 2018, 118(4), 1840-1886. doi:10.1021/acs.chemrev.7b00500http://dx.doi.org/10.1021/acs.chemrev.7b00500
Lu Y.; Men Y. F. Cavitation-induced stress whitening in semi-crystalline polymers. Macromol. Mater. Eng., 2018, 303(11), 1800203. doi:10.1002/mame.201800203http://dx.doi.org/10.1002/mame.201800203
Lin Y. F.; Chen W.; Meng L. P.; Wang D. L.; Li L. B. Recent advances in post-stretching processing of polymer films with in situ synchrotron radiation X-ray scattering. Soft Matter., 2020, 16(15), 3599-3612. doi:10.1039/c9sm02554ehttp://dx.doi.org/10.1039/c9sm02554e
Zhu J. L.; Chu M.; Chen Z. W.; Wang L. Q.; Lin J. P.; Du L. Rational design of heat-resistant polymers with low curing energies by a materials genome approach. Chem. Mater., 2020, 32(11), 4527-4535. doi:10.1021/acs.chemmater.0c00238http://dx.doi.org/10.1021/acs.chemmater.0c00238
0
Views
198
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution