浏览全部资源
扫码关注微信
1.纤维材料改性国家重点实验室 东华大学材料科学与工程学院 上海 201620
2.浙江佳人新材料有限公司 绍兴 312000
Long Chen, E-mail: happyjack@dhu.edu.cn
Wei-wei Zuo, E-mail: zuoweiwei@dhu.edu.cn
Published:20 March 2023,
Published Online:16 November 2022,
Received:22 August 2022,
Accepted:17 October 2022
扫 描 看 全 文
鲍青青,孙海钰,陈卓等.涤纶化学降解单体产物的高效结晶提纯研究[J].高分子学报,2023,54(03):346-355.
Bao Qing-qing,Sun Hai-yu,Chen Zhuo,et al.Efficient Purification of the Glycolysis Monomer of Polyester Enabled by Its Unique Phase Transition Property[J].ACTA POLYMERICA SINICA,2023,54(03):346-355.
鲍青青,孙海钰,陈卓等.涤纶化学降解单体产物的高效结晶提纯研究[J].高分子学报,2023,54(03):346-355. DOI: 10.11777/j.issn1000-3304.2022.22286.
Bao Qing-qing,Sun Hai-yu,Chen Zhuo,et al.Efficient Purification of the Glycolysis Monomer of Polyester Enabled by Its Unique Phase Transition Property[J].ACTA POLYMERICA SINICA,2023,54(03):346-355. DOI: 10.11777/j.issn1000-3304.2022.22286.
为了解决废旧涤纶(PET)纺织品乙二醇醇解法循环利用中存在的醇解产物对苯二甲酸二乙二醇酯(BHET)纯化困难的问题,通过研究BHET晶体的独特的相变性质,发展了BHET纯化新技术. 实验结果表明,对结晶的、醇解反应产物BHET使用减压升华操作,在1.33 kPa,130 ℃的条件下,可获得纯度达99.7%,收率达86.4%,白度(
L
*
值)达99.8的纯化BHET. 回收所得的BHET可再缩聚制备再生PET. 该再生PET在相同条件下与由石油基BHET缩聚所制得的PET具有类似的性质,包括白度、分子量及分子量分布等. 本文还验证了该种醇解法回收废旧涤纶纺织品的技术的普适性:考察各种含有不同成分及颜色的涤纶纺织品样品的醇解行为及产物分离纯化效果. 所研究的BHET纯化方法步骤短、产物纯度高、不额外使用有毒化学试剂,并有效地克服了粉末状BHET在加热纯化时容易发生缩聚的关键难题,为高品质回收废旧涤纶纺织品提供了一种新的路径.
To overcome the difficulties of purification and decolorization of bis(2-hydroxyethyl) terephthalate (BHET) that is associated with the recycling of wasted polyester (PET) textiles
this work studies the unique phase transition behavior of crystalline BHET in hope to find new and efficient purification strategies of the glycolysis product monomer of PET. With sublimation in vacuum
pure and decolorized BHET can be obtained with yield of up to 86.4%
purity of up to 99.7% and whiteness (
L
*
value) of up to 99.8
respectively. Re-polymerization of the obtained purified BHET afforded recycled PET
which possessed similar properties with respective to the PET derived from petroleum-based BHET
including molecular weight
the distribution of molecular weight and whiteness
respectively. The effectiveness of this recycling strategy of wasted polyester textile was also verified by evaluating a series of PET samples
including PET textile blends and the real wasted polyester textiles that were picked from waste bins. This purification strategy of BHET requires less purification steps
affords high purity of the product
obviates the uses of toxic chemicals
avoids the high propensity of BHET powders to polycondensation under the commonly purification conditions and will provide a new strategy for high-quality recycling of waste polyester textiles.
废旧涤纶纺织品回收对苯二甲酸二乙二醇酯纯化废旧涤纶脱色乙二醇醇解法
Recycling of waste polyester textilesPurification of bis(2-hydroxyethyl) terephthalateDecolorization of waste polyesterGlycolysis
"十四五"开局良好, 未来压力和风险增加 中国化纤行业2021年运行分析与2022年展望. 纺织服装周刊, 2022, (14), 13.
废旧涤纶纺织品产生总量. 中国产业研究院2022年度中国行业研究咨询报告. 深圳: 中研普华产业研究院, 2022.
Thompson R. C.; Olsen Y.; Mitchell R. P.; Davis A., Rowland S. J.; John A. W. G.; McGonigle D.; Russell A. E. Lost at sea: where is all the plastic. Science, 2004, 304(5672), 838. doi:10.1126/science.1094559http://dx.doi.org/10.1126/science.1094559
Stubbins A.; Law K. L.; Muñoz S. E.; Bianchi T. S.; Zhu L. X. Plastics in the Earth system. Science, 2021, 373(6550), 51-55. doi:10.1126/science.abb0354http://dx.doi.org/10.1126/science.abb0354
俞森龙, 相恒学, 周家良, 邱天, 胡泽旭, 朱美芳. 典型高分子纤维发展回顾与未来展望. 高分子学报, 2020, 51(1), 39-54. doi:10.11777/j.issn1000-3304.2020.19148http://dx.doi.org/10.11777/j.issn1000-3304.2020.19148
段博, 涂虎, 张俐娜. 可持续高分子-纤维素新材料研究进展. 高分子学报, 2020, 51(1), 66-86. doi:10.11777/j.issn1000-3304.2020.19160http://dx.doi.org/10.11777/j.issn1000-3304.2020.19160
Yamaye M.; Hashime T.; Yamamoto K.; Kosugi Y.; Cho N.; Ichiki T.; Kito T. Chemical recycling of poly(ethylene terephthalate). 2. preparation of terephthalohydroxamic acid and terephthalohydrazide. Ind. Eng. Chem. Res., 2002, 41(16), 3993-3998. doi:10.1021/ie010894bhttp://dx.doi.org/10.1021/ie010894b
Vollmer I.; Jenks M. J. F.; Roelands M. C. P.; White R. J.; van Harmelen T.; de Wild P.; van der Laan G. P.; Meirer F.; Keurentjes J. T. F.; Weckhuysen B. M. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem., Int. Ed., 2020, 59(36), 15402-15423. doi:10.1002/anie.201915651http://dx.doi.org/10.1002/anie.201915651
Eberl A.; Heumann S.; Brückner T.; Araujo R.; Cavaco-Paulo A.; Kaufmann F.; Kroutil W.; Guebitz G. M. Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. J. Biotechnol., 2009, 143(3), 207-212. doi:10.1016/j.jbiotec.2009.07.008http://dx.doi.org/10.1016/j.jbiotec.2009.07.008
Wei R.; Oeser T.; Schmidt J.; Meier R.; Barth M.; Then J.; Zimmermann W. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition. Biotechnol. Bioeng., 2016, 113(8), 1658-1665. doi:10.1002/bit.25941http://dx.doi.org/10.1002/bit.25941
刘彤瑶, 辛艺, 刘杏忠, 吴冰, 向梅春. 微生物降解塑料的研究进展. 生物工程学报, 2021, 37(8), 2688-2702.
Shojaei B.; Abtahi M.; Najafi M. Chemical recycling of PET: a stepping-stone toward sustainability. Polym. Adv. Technol., 2020, 31(12), 2912-2938. doi:10.1002/pat.5023http://dx.doi.org/10.1002/pat.5023
Barnard E.; Arias J. J. R.; Thielemans W. Chemolytic depolymerisation of PET: a review. Green Chem., 2021, 23(11), 3765-3789. doi:10.1039/d1gc00887khttp://dx.doi.org/10.1039/d1gc00887k
Sinha V.; Patel M. R.; Pate,l J. V. PET waste management by chemical recycling: a review. J. Polym. Environ., 2010, 18(1), 8-25. doi:10.1007/s10924-008-0106-7http://dx.doi.org/10.1007/s10924-008-0106-7
Karayannidis G. P.; Achilias D. S. Chemical recycling of poly(ethylene terephthalate). Macromol. Mater. Eng., 2007, 292(2), 128-146. doi:10.1002/mame.200600341http://dx.doi.org/10.1002/mame.200600341
Paszun D.; Spychaj T. Chemical recycling of poly(ethylene terephthalate). Ind. Eng. Chem. Res., 1997, 36(4), 1373-1383. doi:10.1021/ie960563chttp://dx.doi.org/10.1021/ie960563c
Zou Y.; Reddy N.; Yang Y. Q. Reusing polyester/cotton blend fabrics for composites. Compos., Part B, 2011, 42B(4), 763-770. doi:10.1016/j.compositesb.2011.01.022http://dx.doi.org/10.1016/j.compositesb.2011.01.022
Palme A.; Peterson A.; de la Motte H.; Theliander H.; Brelid H. Development of an efficient route for combined recycling of PET and cotton from mixed fabrics. Text. Cloth. Sustain., 2017, 3(1), 4-12. doi:10.1186/s40689-017-0026-9http://dx.doi.org/10.1186/s40689-017-0026-9
De Silva R.; Wang X. G.; Byrne N. Recycling textiles: the use of ionic liquids in the separation of cotton polyester blends. RSC Adv., 2014, 4(55), 29094-29098. doi:10.1039/c4ra04306ehttp://dx.doi.org/10.1039/c4ra04306e
Jeihanipour A.; Karimi K.; Niklasson C.; Taherzadeh M. J. A novel process for ethanol or biogas production from cellulose in blended-fibers waste textiles. Waste Manage., 2010, 30(12), 2504-2509. doi:10.1016/j.wasman.2010.06.026http://dx.doi.org/10.1016/j.wasman.2010.06.026
Haslinger S.; Hummel M.; Anghelescu-Hakala A.; Maattanen M.; Sixta H. Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers. Waste Manage., 2019, 97, 88-96. doi:10.1016/j.wasman.2019.07.040http://dx.doi.org/10.1016/j.wasman.2019.07.040
Ouchi A.; Toida T.; Kumaresan S.; Ando W.; Kato J. A new methodology to recycle polyester from fabric blends with cellulose. Cellulose, 2010, 17(1), 215-222. doi:10.1007/s10570-009-9358-1http://dx.doi.org/10.1007/s10570-009-9358-1
Sun X. W.; Lu C. H.; Zhang W.; Tian D.; Zhang X. X. Acetone-soluble cellulose acetate extracted from waste blended fabrics via ionic liquid catalyzed acetylation. Carbohydr. Polym., 2013, 98(1), 405-411. doi:10.1016/j.carbpol.2013.05.089http://dx.doi.org/10.1016/j.carbpol.2013.05.089
Ling C.; Shi S.; Hou W. S.; Yan Z. F. Separation of waste polyester/cotton blended fabrics by phosphotungstic acid and preparation of terephthalic acid. Polym. Degrad. Stabil., 2019, 161, 157-165. doi:10.1016/j.polymdegradstab.2019.01.022http://dx.doi.org/10.1016/j.polymdegradstab.2019.01.022
Hou W. S.; Ling C.; Shi S.; Yan Z. F.; Zhang M. L.; Zhang B. N.; Dai J. M. Separation and Characterization of Waste Cotton/polyester Blend Fabric with Hydrothermal Method. Fibers Polym., 2018, 19(4), 742-750. doi:10.1007/s12221-018-7735-9http://dx.doi.org/10.1007/s12221-018-7735-9
Shen S. C.; Nges I. A.; Yun J. X.; Liu J. Pre-treatments for enhanced biochemical methane potential of bamboo waste. Chem. Eng. J., 2014, 240, 253-259. doi:10.1016/j.cej.2013.11.075http://dx.doi.org/10.1016/j.cej.2013.11.075
Li M. J.; Li Y. Y.; Lu J.; Li X. Q.; Lu Y. Decolorization and reusing of PET depolymerization waste liquid by electrochemical method with magnetic nanoelectrodes. Environ. Sci. Pollut. Res., 2018, 25(34), 34531-34539. doi:10.1007/s11356-018-3377-0http://dx.doi.org/10.1007/s11356-018-3377-0
El-Desoky H. S.; Ghoneim M. M.; Zidan N. M. Decolorization and degradation of Ponceau S azo-dye in aqueous solutions by the electrochemical advanced Fenton oxidation. Desalination, 2010, 264(1-2), 143-150. doi:10.1016/j.desal.2010.07.018http://dx.doi.org/10.1016/j.desal.2010.07.018
Radha K. V.; Sridevi V.; Kalaivani K.; Raj M. Electrochemical decolorization of the dye acid orange 10. Desalin. Water Treat., 2009, 7(1-3), 6-11. doi:10.5004/dwt.2009.309http://dx.doi.org/10.5004/dwt.2009.309
Namasivayam C.; Kavitha D. Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigments, 2002, 54(1), 47-58. doi:10.1016/s0143-7208(02)00025-6http://dx.doi.org/10.1016/s0143-7208(02)00025-6
Sohrabnezhad S.; Pourahmad A. Comparison absorption of new methylene blue dye in zeolite and nanocrystal zeolite. Desalination, 2010, 256(1-3), 84-89. doi:10.1016/j.desal.2010.02.009http://dx.doi.org/10.1016/j.desal.2010.02.009
Mahmoodi N. M.; Najafi F.; Khorramfar S.; Amini F.; Arami M. Synthesis, characterization and dye removal ability of high capacity polymeric adsorbent: polyaminoimide homopolymer. J. Hazard. Mater., 2011, 198, 87-94. doi:10.1016/j.jhazmat.2011.10.018http://dx.doi.org/10.1016/j.jhazmat.2011.10.018
Huang J. J.; Yan D. X.; Dong H. X.; Li F.; Lu X. M.; Xin J. Y. Removal of trace amount impurities in glycolytic monomer of polyethylene terephthalate by recrystallization. J. Environ. Chem. Eng., 2021, 9(5), 106277. doi:10.1016/j.jece.2021.106277http://dx.doi.org/10.1016/j.jece.2021.106277
Yagub M. T.; Sen T. K.; Afroze S.; Ang H. M. Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci., 2014, 209, 172-184. doi:10.1016/j.cis.2014.04.002http://dx.doi.org/10.1016/j.cis.2014.04.002
Katheresan V.; Kansedo J.; Lau S. Y. Efficiency of various recent wastewater dye removal methods: a review. J. Environ. Chem. Eng., 2018, 6(4), 4676-4697. doi:10.1016/j.jece.2018.06.060http://dx.doi.org/10.1016/j.jece.2018.06.060
Senguttuvan S.; Senthilkumar P.; Janaki V.; Kamala-Kannan S. Significance of conducting polyaniline based composites for the removal of dyes and heavy metals from aqueous solution and wastewaters―a review. Chemosphere, 2021, 267, 129201. doi:10.1016/j.chemosphere.2020.129201http://dx.doi.org/10.1016/j.chemosphere.2020.129201
余新健, 叶建荣, 徐允武, 楼宝良, 符学州, 戴以明. 废旧涤纶纺织品的化学解聚工艺. 合成纤维, 2018, 47(6), 34-36.
稻田修司, 佐藤菊智. 对苯二甲酸二(2-羟乙基)酯的精制方法. 中国专利, CN 100344604C. 2007-10-24.
Laszlo J. A. Regeneration of dye-saturated quaternized cellulose by bisulfite-mediated borohydride reduction of dye azo groups: an improved process for decolorization of textile wastewaters. Environ. Sci. Technol, 1997, 31(12), 3647-3653. doi:10.1021/es970395vhttp://dx.doi.org/10.1021/es970395v
0
Views
108
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution