浏览全部资源
扫码关注微信
四川大学建筑与环境学院 环境与火安全高分子材料协同创新中心 高分子材料国家重点实验室 环保型高分子材料国家地方联合工程实验室 成都 610064
Hai-bo Zhao, E-mail: haibo@scu.edu.cn
Yu-zhong Wang, E-mail:polymers@vip.126.com
Published:20 March 2023,
Published Online:02 December 2022,
Received:02 October 2022,
Accepted:09 November 2022
扫 描 看 全 文
李文雄,汪秀丽,赵海波等.层状双氢氧化物对有机硅泡沫高温陶瓷化演变的影响研究[J].高分子学报,2023,54(03):381-389.
Li Wen-xiong,Wang Xiu-li,Zhao Hai-bo,et al.The Effect of Layered Double Hydroxide on the Ceramicization Evolution of Silicone Foam at High Temperatures[J].ACTA POLYMERICA SINICA,2023,54(03):381-389.
李文雄,汪秀丽,赵海波等.层状双氢氧化物对有机硅泡沫高温陶瓷化演变的影响研究[J].高分子学报,2023,54(03):381-389. DOI: 10.11777/j.issn1000-3304.2022.22287.
Li Wen-xiong,Wang Xiu-li,Zhao Hai-bo,et al.The Effect of Layered Double Hydroxide on the Ceramicization Evolution of Silicone Foam at High Temperatures[J].ACTA POLYMERICA SINICA,2023,54(03):381-389. DOI: 10.11777/j.issn1000-3304.2022.22287.
有机硅泡沫(SiF)在高温热流或火焰中发生分解,留下疏松脆弱易坍塌的残余物,完全丧失原有的密封、隔热、绝缘等优异特性,借助新兴的高温陶瓷化技术可较好地解决这一问题. 首先将蒙脱土、低熔点玻璃粉、镁铁层状双氢氧化物(LDH)在SiF发泡前与基胶预混均匀,然后正常交联产气发泡制得高温可陶瓷化SiF复合材料. 通过对不同温度煅烧后的SiF陶瓷体进行压缩强度、微观形貌以及晶体结构等表征,从而推断可陶瓷化SiF在高温环境中的陶瓷化演变过程. 其中,LDH作为一种高温陶瓷化协效剂,不仅可以减少SiF残余物中的缺陷,而且可以加快复合材料的陶瓷化转变进程,进一步提升陶瓷体的力学强度,使得1000 ℃煅烧后SiF的压缩强度与煅烧前相比提高约25倍,达到517 kPa. 由于陶瓷化体系的构建,最终实现了SiF在高温环境中向致密连续且强硬的陶瓷体转变,为SiF的高温防火提供了一种切实可行的途径.
Silicone foam (SiF) decomposes in high-temperature heat flow or flame
leaving loose
fragile and easily collapsed residues
completely losing its original excellent characteristics such as sealing
heat insulation
and insulation. This problem may be well solved with the help of emerging high-temperature ceramizable technology. First
montmorillonite
low-melting glass powder
and layered double hydroxide (MgFe-LDH) are pre-mixed with silicone oil before SiF foaming
and then cross-linking and gas-generating foaming are carried out to obtain the high-temperature ceramizable SiF material. By characterizing the compressive strength
microscopic morphology
and crystal structure of SiF ceramic residues sintered at different temperatures
the ceramization evolution process of ceramizable SiF during high-temperature environments can be inferred. As a high-temperature ceramization synergist
LDH can not only reduce defects in SiF residues but also accelerate the ceramization transformation process of the material
and further enhance the mechanical strength of the ceramic residue. The compressive strength of the material after sintering at 1000 ℃ reaches 517 kPa
which is about 25 times higher than that of the original. Owing to the construction of the ceramizable system
the transformation of SiF to dense continuous
and tough ceramic foam in high temperature environment is realized
which provides a practical approach for the high-temperature fire resistance of SiF.
层状双氢氧化物高温陶瓷化协效剂有机硅泡沫陶瓷化演变耐高温
Layered double hydroxideHigh-temperature ceramizable synergistSilicone foamCeramization evolutionHigh temperature resistance
Cao C. F.; Wang P. H.; Zhang J. W.; Guo K. Y.; Li Y.; Xia Q. Q.; Zhang G. D.; Zhao L.; Chen H.; Wang L. B.; Gao J. F.; Song P. G.; Tang L. C. One-step and green synthesis of lightweight, mechanically flexible and flame-retardant polydimethylsiloxane foam nanocomposites via surface-assembling ultralow content of graphene derivative. Chem. Eng. J., 2020, 393, 124724. doi:10.1016/j.cej.2020.124724http://dx.doi.org/10.1016/j.cej.2020.124724
Du W. N.; Yin C. L.; Huang H.; Ge X. G. Vinyl-functionalized polyborosiloxane for improving mechanical and flame-retardancy performances of silicone rubber foam composites. Polym. Int., 2022, 71(1), 124-131. doi:10.1002/pi.6292http://dx.doi.org/10.1002/pi.6292
Pang Q. T.; Kang F. R.; Deng J.; Lei L.; Lu J.; Shao S. Y. Flame retardancy effects between expandable graphite and halloysite nanotubes in silicone rubber foam. RSC Adv., 2021, 11(23), 13821-13831. doi:10.1039/d1ra01409ahttp://dx.doi.org/10.1039/d1ra01409a
邓军, 李航, 康付如, 吴长林. 硅橡胶复合材料阻燃研究进展. 高分子通报, 2020, (3), 1-8. doi:10.14028/j.cnki.1003-3726.2020.03.001http://dx.doi.org/10.14028/j.cnki.1003-3726.2020.03.001
张贤珍, 姜其斌, 颜渊巍, 陈琪. 有机硅泡沫材料的制备及性能研究进展. 橡胶工业, 2020, 67(1), 73-79. doi:10.12136/j.issn.1000-890X.2020.01.0073http://dx.doi.org/10.12136/j.issn.1000-890X.2020.01.0073
孙希路, 刘春霞, 李刚, 辛帅, 马凤国. 白云母与玻璃粉配合对可瓷化阻燃硅橡胶泡沫性能的影响. 有机硅材料, 2017, 31(4), 257-262. doi:10.11941/j.issn.1009-4369.2017.04.005http://dx.doi.org/10.11941/j.issn.1009-4369.2017.04.005
Wang Y. L.; Lai X. J.; Li H. Q.; Liu T.; Zeng X. R. Significantly improve fire safety of silicone rubber by efficiently catalyzing ceramization on fluorophlogopite. Compos. Commun., 2021, 25, 100683. doi:10.1016/j.coco.2021.100683http://dx.doi.org/10.1016/j.coco.2021.100683
骆春佳, 孔杰. 可瓷化高分子合成与功能化进展. 高分子学报, 2021, 52(11), 1427-1440. doi:10.11777/j.issn1000-3304.2021.21086http://dx.doi.org/10.11777/j.issn1000-3304.2021.21086
Li Z. X.; Liang W. J.; Shan Y. F.; Wang X. X.; Yang K.; Cui Y. Y. Study of flame‐retarded silicone rubber with ceramifiable property. Fire Mater., 2020, 44(4), 487-496. doi:10.1002/fam.2802http://dx.doi.org/10.1002/fam.2802
Li Y. M.; Hu S. L.; Wang D. Y. Polymer-based ceramifiable composites for flame retardant applications: A review. Compos. Commun., 2020, 21, 100405. doi:10.1016/j.coco.2020.100405http://dx.doi.org/10.1016/j.coco.2020.100405
Wang J. H.; Ji C. T.; Yan Y. T.; Zhao D.; Shi L. Y. Mechanical and ceramifiable properties of silicone rubber filled with different inorganic fillers. Polym. Degrad. Stab., 2015, 121, 149-156. doi:10.1016/j.polymdegradstab.2015.09.003http://dx.doi.org/10.1016/j.polymdegradstab.2015.09.003
Anyszka R.; Bieliński D. M.; Pędzich Z.; Szumera M. Influence of surface-modified montmorillonites on properties of silicone rubber-based ceramizable composites. J. Therm. Anal. Calorim., 2015, 119(1), 111-121. doi:10.1007/s10973-014-4156-xhttp://dx.doi.org/10.1007/s10973-014-4156-x
Hanu L. G.; Simon G. P.; Mansouri J.; Burford R. P.; Cheng Y. B. Development of polymer-ceramic composites for improved fire resistance. J. Mater. Process. Technol., 2004, 153-154, 401-407.
Chen X. L.; Li M.; Zhuo J. L.; Ma C. Y.; Jiao C. M. Influence of Fe2O3 on smoke suppression and thermal degradation properties in intumescent flame-retardant silicone rubber. J. Therm. Anal. Calorim., 2016, 123(1), 439-448. doi:10.1007/s10973-015-4911-7http://dx.doi.org/10.1007/s10973-015-4911-7
Cavani F.; Trifirò F.; Vaccari A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today, 1991, 11(2), 173-301. doi:10.1016/0920-5861(91)80068-khttp://dx.doi.org/10.1016/0920-5861(91)80068-k
Liu B. W.; Zhao H. B.; Wang Y. Z. Advanced flame-retardant methods for polymeric materials. Adv. Mater., 2021, doi: 10.1002/adma.202107905.http://dx.doi.org/10.1002/adma.202107905.
李文雄, 赵海波, 汪秀丽, 王玉忠. 不同层状双氢氧化物对有机硅泡沫阻燃抑烟与力学性能的影响研究. 化学研究与应用, 2022, 34(6), 1369-1376. doi:10.3969/j.issn.1004-1656.2022.06.019http://dx.doi.org/10.3969/j.issn.1004-1656.2022.06.019
张佳燕, 刘博文, 王玉忠, 赵海波. 聚氨酯泡沫无卤阻燃研究进展. 高分子学报, 2022, 53(7), 842-855. doi:10.11777/j.issn1000-3304.2022.22062http://dx.doi.org/10.11777/j.issn1000-3304.2022.22062
Tan J. H.; Wang X. P.; Luo Y. F.; Jia D. M. Rubber/clay nanocomposites by combined latex compounding and melt mixing: A masterbatch process. Mater. Des., 2012, 34, 825-831. doi:10.1016/j.matdes.2011.07.015http://dx.doi.org/10.1016/j.matdes.2011.07.015
Hao Q. Q.; Wang G. W.; Zhao Y. H.; Liu Z. T.; Liu Z. W. Fischer-Tropsch synthesis over cobalt/montmorillonite promoted with different interlayer cations. Fuel, 2013, 109, 33-42. doi:10.1016/j.fuel.2012.06.033http://dx.doi.org/10.1016/j.fuel.2012.06.033
Gong X. H.; Wu T. Y.; Ma J.; Zhao D.; Shen Y. C.; Wang T. W. Improved self-supporting property of ceramifying silicone rubber composites by forming crystalline phase at high temperatures. J. Alloys Compd., 2017, 706, 322-329. doi:10.1016/j.jallcom.2017.02.252http://dx.doi.org/10.1016/j.jallcom.2017.02.252
Zhao W.; Zhao H. B.; Cheng J. B.; Li W. X.; Zhang J. Y.; Wang Y. Z. A green, durable and effective flame-retardant coating for expandable polystyrene foams. Chem. Eng. J., 2022, 440, 135807. doi:10.1016/j.cej.2022.135807http://dx.doi.org/10.1016/j.cej.2022.135807
Zhang G. D.; Wu Z. H.; Xia Q. Q.; Qu Y. X.; Pan H. T.; Hu W. J.; Zhao L.; Cao K.; Chen E. Y.; Yuan Z.; Gao J. F.; Mai Y. W.; Tang L. C. Ultrafast flame-induced pyrolysis of poly(dimethylsiloxane) foam materials toward exceptional superhydrophobic surfaces and reliable mechanical robustness. ACS Appl. Mater. Interfaces, 2021, 13(19), 23161-23172. doi:10.1021/acsami.1c03272http://dx.doi.org/10.1021/acsami.1c03272
Asimakopoulou E.; Zhang J. P.; McKee M.; Wieczorek K.; Krawczyk A.; Andolfo M.; Scatto M.; Sisani M.; Bastianini M.; Karakassides A.; Papakonstantinou P. Fire retardant action of layered double hydroxides and zirconium phosphate nanocomposites fillers in polyisocyanurate foams. Fire Technol., 2020, 56(4), 1755-1776. doi:10.1007/s10694-020-00953-7http://dx.doi.org/10.1007/s10694-020-00953-7
0
Views
123
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution