浏览全部资源
扫码关注微信
1.长沙学院生物与化学工程学院 长沙 410003
2.中南大学化学化工学院 长沙 410083
Xiao-mei Wang, E-mail: wxm11@ccsu.edu.cn
Published:20 April 2023,
Published Online:02 December 2022,
Received:05 September 2022,
Accepted:10 November 2022
扫 描 看 全 文
王小梅,郭江飞,王立志等.氨基硫脲修饰卟啉基聚合物的制备及对CO2和Hg2+的吸附[J].高分子学报,2023,54(04):520-528.
Wang Xiao-mei,Guo Jiang-fei,Wang Li-zhi,et al.Preparation of Thiosemicarbazide-decorated Porphyrin-based Polymers and Their Adsorption of CO2 and Hg2+[J].ACTA POLYMERICA SINICA,2023,54(04):520-528.
王小梅,郭江飞,王立志等.氨基硫脲修饰卟啉基聚合物的制备及对CO2和Hg2+的吸附[J].高分子学报,2023,54(04):520-528. DOI: 10.11777/j.issn1000-3304.2022.22303.
Wang Xiao-mei,Guo Jiang-fei,Wang Li-zhi,et al.Preparation of Thiosemicarbazide-decorated Porphyrin-based Polymers and Their Adsorption of CO2 and Hg2+[J].ACTA POLYMERICA SINICA,2023,54(04):520-528. DOI: 10.11777/j.issn1000-3304.2022.22303.
利用四苯基卟啉和三种酰基化交联剂(草酰氯、对苯二甲酰氯和均苯三甲酰氯)经Friedel-Crafts酰基化反应,制备了卟啉基聚合物中间体,进一步用氨基硫脲与之发生席夫碱反应,得到了氨基硫脲修饰卟啉基聚合物. 结果发现,聚合物的交联结构使其具有高比表面积和丰富的超微孔,显示出优异的CO
2
吸附(138 mg/g,273 K,10
5
Pa)及CO
2
/N
2
选择性. 同时,聚合物表面氨基和硫脲的引入使得其对Hg
2+
的吸附量可达311.0 mg/g,吸附机理也证实了N和S对Hg
2+
的配位作用.
The hyper-cross-linked polymers (HCPs) are considered one of the most famous porous organic polymers for their great advantages of high Brunauer-Emmett-Teller (BET) surface area (
S
BET
)
abundant micropores
and tunable porosity. Furthermore
the extensive aromatic monomers
inexpensive Lewis acid catalysts
and simply construction process make the HCPs developed greatly. In this way
the Friedel-Crafts alkylation was widely used for the construction of HCPs. However
the shortage of functional groups and reaction sites make the HCPs limited in the adsorption performance. The Friedel-Crafts acylation would take ketone carbonyl to the resulting polymers
which will performed well in the adsorption performance after the post-functionalization. However
it is still difficult to construct the HCPs with high
S
BET
through Friedel-Crafts acylation. Therefore
in this work
a series of porphyrin-based polymers with high specific surface area was constructed through the Friedel-Crafts acylation reaction by using three different acylated crosslinking agents (
p
-phthaloyl chloride
trimesoyl chloride
and oxalyl chloride) and 5
10
15
20-tetraphenylporphyrin. The polymers show abundant ketone carbonyl groups. Therefore
thiosemicarbazide
which has amino and thiourea structure
was used for post-functionalization through Schiff-based reaction and a series of functionalized porphyrin-based polymers were obtained. Due to the hyper-cross-linked structure of the polymer with high
S
BET
and abundant micropores
The polymer showed remarkable CO
2
adsorption performance (138 mg/g
273 K
10
5
Pa) and excellent CO
2
/N
2
selectivity. Remarkable
the post-functionalization of thiosemicarbazide decreased the
S
BET
and the
V
micro
of the polymers
the introducing of the N and S heteroatoms greatly improved the CO
2
adsorption capacity for the strong interaction between the heteroatoms and the CO
2
moleculars. Especially for HTMb-TSC
the post-functionalization make the CO
2
capture capacity increased from 37 mg/g to 91 mg/g (273 K
10
5
Pa). At the same time
the adsorption capacity of Hg
2+
was increased from 210.2 mg/g to 311.0 mg/g due to the introduction of amino and thiourea structures
and the adsorption mechanism also confirmed the coordination between N and S with Hg
2+
. The porphyrin-based polymers also showed good reusability. This work confirmed the advantages of the porphyrin structure in the adsorption applications and expand the application of Friedel-Crafts acylation reaction in the construction of porous organic polymers.
Friedel-Crafts酰基化反应席夫碱反应卟啉CO2Hg2+
Friedel-Crafts acylation reactionSchiff-based reactionPorphyrinCO2Hg2+
Zeng Y. F.; Zou R. Q.; Zhao Y. L. Covalent organic frameworks for CO2 capture. Adv. Mater., 2016, 28(15), 2855-2873. doi:10.1002/adma.201505004http://dx.doi.org/10.1002/adma.201505004
Oschatz M.; Antonietti M. A search for selectivity to enable CO2 capture with porous adsorbents. Energy Environ. Sci., 2018, 11(1), 57-70. doi:10.1039/c7ee02110khttp://dx.doi.org/10.1039/c7ee02110k
Fang L.; Li L.; Qu Z.; Xu H. M.; Xu J. F.; Yan N. Q. A novel method for the sequential removal and separation of multiple heavy metals from wastewater. J. Hazard. Mater., 2018, 342, 617-624. doi:10.1016/j.jhazmat.2017.08.072http://dx.doi.org/10.1016/j.jhazmat.2017.08.072
Chalkidis A.; Jampaiah D.; Hartley P. G.; Sabri Y. M.; Bhargava S. K. Mercury in natural gas streams: A review of materials and processes for abatement and remediation. J. Hazard. Mater., 2020, 382, 121036. doi:10.1016/j.jhazmat.2019.121036http://dx.doi.org/10.1016/j.jhazmat.2019.121036
罗光前, 吉庆钰, 李显, 姚洪. 聚氯乙烯强化活性炭脱汞性能. 华中科技大学学报(自然科学版), 2021, 49(4), 14-19. doi:10.13245/j.hust.210423http://dx.doi.org/10.13245/j.hust.210423
王天雄, 韩宝航. 多孔聚咔唑用于二氧化碳捕获与催化转化. 科学通报, 2020, 65(31), 3389-3400. doi:10.1360/TB-2020-0327http://dx.doi.org/10.1360/TB-2020-0327
Liu H.; Chang L.; Liu W. J.; Xiong Z.; Zhao Y. C.; Zhang J. Y. Advances in mercury removal from coal-fired flue gas by mineral adsorbents. Chem. Eng. J., 2020, 379, 122263. doi:10.1016/j.cej.2019.122263http://dx.doi.org/10.1016/j.cej.2019.122263
闫婷婷; 邢国龙; 贲腾 一步碳化多孔有机材料制备多孔碳及其性能的研究. 化学学报, 2018, 76(5), 366-376.. doi:10.7503/cjcu20170781http://dx.doi.org/10.7503/cjcu20170781
Yang L.; Zeng X. F.; Wang W. C.; Cao D. P. Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv. Funct. Mater., 2018, 28(7), 1704537. doi:10.1002/adfm.201704537http://dx.doi.org/10.1002/adfm.201704537
吕露茜, 赵娅俐, 魏嫣莹, 王海辉. 二维金属-有机骨架膜的制备及其在分离中的应用. 化学学报, 2021, 79(7), 869-884. doi:10.6023/A21030099http://dx.doi.org/10.6023/A21030099
Wang T.; Lin E.; Peng Y. L.; Chen Y.; Cheng P.; Zhang Z. J. Rational design and synthesis of ultramicroporous metal-organic frameworks for gas separation. Coord. Chem. Rev., 2020, 423, 213485. doi:10.1016/j.ccr.2020.213485http://dx.doi.org/10.1016/j.ccr.2020.213485
Tan L. X.; Tan B. E. Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chem. Soc. Rev., 2017, 46(11), 3322-3356. doi:10.1039/c6cs00851hhttp://dx.doi.org/10.1039/c6cs00851h
Ji W. Y.; Wang T. X.; Ding X. S.; Lei S. B.; Han B. H. Porphyrin- and phthalocyanine-based porous organic polymers: From synthesis to application. Coord. Chem. Rev., 2021, 439, 213875. doi:10.1016/j.ccr.2021.213875http://dx.doi.org/10.1016/j.ccr.2021.213875
Hou S. S.; Razzaque S.; Tan B. E. Effects of synthesis methodology on microporous organic hyper-cross-linked polymers with respect to structural porosity, gas uptake performance and fluorescence properties. Polym. Chem., 2019, 10(11), 1299-1311. doi:10.1039/c8py01730ahttp://dx.doi.org/10.1039/c8py01730a
Ramezani M. S.; Ozdemir J.; Khosropour A. R.; Beyzavi H. Sulfur-decorated hyper-cross-linked coal tar: A microporous organic polymer for efficient and expeditious mercury removal. ACS Appl. Mater. Interfaces, 2020, 12(39), 44117-44124. doi:10.1021/acsami.0c10617http://dx.doi.org/10.1021/acsami.0c10617
Wang L. Z.; Chen G.; Xiao Q.; Zhang D.; Sang Y. F.; Huang J. H. Bifunctional porous organic polymers based on postfunctionalization of the ketone-based polymers. Ind. Eng. Chem. Res., 2020, 59(43), 19117-19125. doi:10.1021/acs.iecr.0c04399http://dx.doi.org/10.1021/acs.iecr.0c04399
Wang L. Z.; Xiao Q.; Zhang D.; Kuang W.; Huang J. H.; Liu Y. N. Postfunctionalization of porous organic polymers based on Friedel-Crafts acylation for CO2 and Hg2+ capture. ACS Appl. Mater. Interfaces, 2020, 12(32), 36652-36659. doi:10.1021/acsami.0c11180http://dx.doi.org/10.1021/acsami.0c11180
Wang L. Z.; Guo J. F.; Xiang X. Y.; Sang Y. F.; Huang J. H. Melamine-supported porous organic polymers for efficient CO2 capture and Hg2+ removal. Chem. Eng. J., 2020, 387, 124070. doi:10.1016/j.cej.2020.124070http://dx.doi.org/10.1016/j.cej.2020.124070
Qi Z. L.; Cheng Y. H.; Xu Z.; Chen M. L. Recent advances in porphyrin-based materials for metal ions detection. Int. J. Mol. Sci., 2020, 21(16), 5839. doi:10.3390/ijms21165839http://dx.doi.org/10.3390/ijms21165839
Wang K.; Qi D. D.; Li Y. L.; Wang T. Y.; Liu H. B.; Jiang J. Z. Tetrapyrrole macrocycle based conjugated two-dimensional mesoporous polymers and covalent organic frameworks: From synthesis to material applications. Coord. Chem. Rev., 2019, 378, 188-206. doi:10.1016/j.ccr.2017.08.023http://dx.doi.org/10.1016/j.ccr.2017.08.023
Feng X.; Liu L. L.; Honsho Y.; Saeki A.; Seki S.; Irle S.; Dong Y. P.; Nagai A.; Jiang D. L. High-rate charge-carrier transport in porphyrin covalent organic frameworks: Switching from hole to electron to ambipolar conduction. Angew. Chem. Int. Ed., 2012, 51(11), 2618-2622. doi:10.1002/anie.201106203http://dx.doi.org/10.1002/anie.201106203
Kaya Y.; Erçağ A.; Kaya K. Synthesis, characterization and antioxidant activities of dioxomolybdenum(VI) complexes of new Schiff bases derived from substituted benzophenones. J. Coord. Chem., 2018, 71(20), 3364-3380. doi:10.1080/00958972.2018.1516872http://dx.doi.org/10.1080/00958972.2018.1516872
Ravi S.; Puthiaraj P.; Row K. H.; Park D. W.; Ahn W. S. Aminoethanethiol-grafted porous organic polymer for Hg2+ removal in aqueous solution. Ind. Eng. Chem. Res., 2017, 56(36), 10174-10182. doi:10.1021/acs.iecr.7b02743http://dx.doi.org/10.1021/acs.iecr.7b02743
Wang Y. F.; Qu R. J.; Mu Y. L.; Sun C. M.; Ji C. N.; Zhang Y.; An K.; Jia X. H.; Zhang Y. Amino- and thiol- polysilsesquioxane simultaneously coating on poly(p-phenylenetherephthal amide) fibers: bifunctional adsorbents for Hg(II). Front. Chem., 2019, 7, 465. doi:10.3389/fchem.2019.00465http://dx.doi.org/10.3389/fchem.2019.00465
Guo X. Y.; Du B.; Wei Q.; Yang J.; Hu L. H.; Yan L. G.; Xu W. Y. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water. J. Hazard. Mater., 2014, 278, 211-220. doi:10.1016/j.jhazmat.2014.05.075http://dx.doi.org/10.1016/j.jhazmat.2014.05.075
Li X.; Qi Y.; Yue G. Z.; Wu Q. X.; Li Y.; Zhang M. C.; Guo X. H.; Li X. F.; Ma L. J.; Li S. J. Solvent- and catalyst-free synthesis of an azine-linked covalent organic framework and the induced tautomerization in the adsorption of U(VI) and Hg(II). Green Chem., 2019, 21(3), 649-657. doi:10.1039/c8gc03295ehttp://dx.doi.org/10.1039/c8gc03295e
Huang L. J.; Shuai Q. Facile approach to prepare sulfur-functionalized magnetic amide-linked organic polymers for enhanced Hg(II) removal from water. ACS Sustainable Chem. Eng., 2019, 7(11), 9957-9965. doi:10.1021/acssuschemeng.9b00957http://dx.doi.org/10.1021/acssuschemeng.9b00957
Liu Y.; Gao Q.; Li C.; Liu S.; Xia K. S.; Han B.; Zhou C. G. Fabrication of organic probe decorated water-soluble polymer chains on natural fibers for selective detection and efficient removal of Hg2+ ions in pure aqueous media. ACS Appl. Polym. Mater., 2019, 1(10), 2680-2691. doi:10.1021/acsapm.9b00631http://dx.doi.org/10.1021/acsapm.9b00631
Zou, H.; Wang, Y. Q. Synthesis of poly(2-aminothiazole)-coated polystyrene particles and their excellent Hg(II) adsorption properties. Polymers, 2020, 12(4), 749. doi:10.3390/polym12040749http://dx.doi.org/10.3390/polym12040749
Rajalakshmi K.; Muthusamy S.; Xie M.; Nam Y. S.; Lee B. H.; Lee K. B.; Xu Y. G.; Xie J. M. Fabrication of thiophene decorated side chain entanglement free COFs for highly regenerable mercury extraction. Chem. Eng. J., 2022, 430, 133149. doi:10.1016/j.cej.2021.133149http://dx.doi.org/10.1016/j.cej.2021.133149
0
Views
66
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution