浏览全部资源
扫码关注微信
1.稀土新材料教育部工程研究中心
2.生命有机磷化学及化学生物学教育部重点实验室 清华大学化学系 北京 100084
3.中国科学院化学研究所 北京 100190
4.中国石油大学(华东)化学工程学院 青岛 258000
Dong-sheng Liu, E-mail: liudongsheng@tsinghua.edu.cn
Published:20 May 2023,
Published Online:24 November 2022,
Received:08 September 2022,
Accepted:01 November 2022
扫 描 看 全 文
田显城,董原辰,孙亚伟等.利用高分子多基元协同效应增强脂质体稳定性的研究[J].高分子学报,2023,54(05):675-686.
Tian Xian-cheng,Dong Yuan-chen,Sun Ya-wei,et al.Enhancing Stability of Liposome by Synergistic Effect of Polymer Multiple-units[J].ACTA POLYMERICA SINICA,2023,54(05):675-686.
田显城,董原辰,孙亚伟等.利用高分子多基元协同效应增强脂质体稳定性的研究[J].高分子学报,2023,54(05):675-686. DOI: 10.11777/j.issn1000-3304.2022.22305.
Tian Xian-cheng,Dong Yuan-chen,Sun Ya-wei,et al.Enhancing Stability of Liposome by Synergistic Effect of Polymer Multiple-units[J].ACTA POLYMERICA SINICA,2023,54(05):675-686. DOI: 10.11777/j.issn1000-3304.2022.22305.
通过合成接枝胆固醇的壳聚糖水溶性高分子,并利用所接枝胆固醇的插膜能力,诱导高分子贴附于脂质体表面,形成高分子-脂质体复合物. 研究发现,壳聚糖水溶性高分子可以起到屏蔽膜表面电荷的作用,同时该体系利用高分子链上多位点修饰的疏水基团与磷脂分子之间的疏水作用和高分子多基元之间共价连接的协同效应,增强了脂质体的抗融合及抗表面活性剂能力. 该复合策略制备过程简便快捷,在体外实验中已展现出良好的稳定性,在长循环药物递送方面具有潜在的应用.
We synthesized a water soluble glycol chitosan polymer grafted with cholesterol through substitution reaction
and the polymer was applied to form a polymer-liposome complex (PLC). According to dynamic light scattering (DLS) and transmission electron microscope (TEM) characterization
the diameter of the PLC was about 100 nm and the morphology was similar to the plain liposome. The cholesterol group can induce the polymer backbone to attach to the surface of the liposome membrane and the integration cability of the glycol chitosan-cholesterol (GCC) was characterized by laser confocal scanning microscope (LCSM). The zeta potential of the liposome containing negative charged phospholipid was -23.2 mV. With integration of the glycol chitosan-cholesterol
the zeta potential significantly increased to -1.78 mV
which indicated that the attached water-soluble polymer can shield the surface charge of the membrane. By encapsulating fluorescent molecules in the liposome or mixing fluorescent phospholipid during the lipid preparation process
fluorescence resonance energy transfer (FRET) experiment was introduced to test the stability of the PLC. Charge-induced liposome fusion occurred by adding positively charged ions or liposome into negatively charged liposome solution. The PLC has shown the ability to resist the fusion process which can keep the integrity and monodispersity of the liposome. However
the plain liposome was observed in aggregates visible to the naked eyes after adding hetero-charged ions in several minutes. The FRET variation results indicated that the addition of the GCC can slow down the hetero-charged liposome fusion process. In addition
the PLC can also protect against the liposome leakage induced by surfactant
which resulted from synergistic effect of polymer multiple-units. Incubated with 20% FBS under 37 ℃
the PLC showed well stability in 3 days
while the PDI and the size of the plain liposome were increased obviously during incubation. The preparation process of this polymer-liposome complex strategy is simple and fast
and it has shown good stability in
in vitro
experiments. This system has potential applications in long circulation drug delivery.
脂质体稳定性高分子复合物
LiposomeStabilityPolymerComplex
Fenton O. S.; Olafson K. N.; Pillai P. S.; Mitchell M. J.; Langer R. Advances in biomaterials for drug delivery. Adv. Mater., 2018, 30(29), 1705328. doi:10.1002/adma.201705328http://dx.doi.org/10.1002/adma.201705328
Yang B.; Zhang X. D.; Li J.; Tian J.; Wu Y. P.; Yu F. X.; Wang R. B.; Wang H.; Zhang D. W.; Liu Y.; Zhou L.; Li Z. T. In situ loading and delivery of short single- and double-stranded DNA by supramolecular organic frameworks. CCS Chem., 2019, 1(2), 156-165. doi:10.31635/ccschem.019.20180011http://dx.doi.org/10.31635/ccschem.019.20180011
Yu N.; Zhang Y. F.; Li J. Y.; Gu W. X.; Yue S. J.; Li B.; Meng F. H.; Sun H. L.; Haag R. N.; Yuan J. D.; Zhong Z. Y. Daratumumab immunopolymersome-enabled safe and CD38-targeted chemotherapy and depletion of multiple myeloma. Adv. Mater., 2021, 33(39), 2007787. doi:10.1002/adma.202007787http://dx.doi.org/10.1002/adma.202007787
Zhang J.; Wang X. X.; Cheng L.; Yuan J. D.; Zhong Z. Y. Sp94 peptide mediating highly specific and efficacious delivery of polymersomal doxorubicin hydrochloride to hepatocellular carcinoma in vivo. Colloids Surf. B Biointerfaces, 2021, 197, 111399. doi:10.1016/j.colsurfb.2020.111399http://dx.doi.org/10.1016/j.colsurfb.2020.111399
姚陈志, 汪枭睿, 胡进明, 刘世勇. 高分子囊泡渗透性与微结构协同调控. 高分子学报, 2019, 50(6), 553-566. doi:10.11777/j.issn1000-3304.2019.190031http://dx.doi.org/10.11777/j.issn1000-3304.2019.190031
Chiang Y. T.; Cheng Y. T.; Lu C. Y.; Yen Y. W.; Yu L. Y.; Yu K. S.; Lyu S. Y.; Yang C. Y.; Lo C. L. Polymer-liposome complexes with a functional hydrogen-bond cross-linker for preventing protein adsorption and improving tumor accumulation. Chem. Mater., 2013, 25(21), 4364-4372. doi:10.1021/cm402614khttp://dx.doi.org/10.1021/cm402614k
Fan Y. C.; Marioli M.; Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J. Pharm. Biomed. Anal., 2021, 192, 113642. doi:10.1016/j.jpba.2020.113642http://dx.doi.org/10.1016/j.jpba.2020.113642
Gref R.; Minamitake Y.; Peracchia M. T.; Trubetskoy V.; Torchilin V.; Langer R. Biodegradable long-circulating polymeric nanospheres. Science, 1994, 263(5153), 1600-1603. doi:10.1126/science.8128245http://dx.doi.org/10.1126/science.8128245
Chan C. L.; Majzoub R. N.; Shirazi R. S.; Ewert K. K.; Chen Y. J.; Liang K. S.; Safinya C. R. Endosomal escape and transfection efficiency of PEGylated cationic liposome-DNA complexes prepared with an acid-labile peg-lipid. Biomaterials, 2012, 33(19), 4928-4935. doi:10.1016/j.biomaterials.2012.03.038http://dx.doi.org/10.1016/j.biomaterials.2012.03.038
Chan J. M.; Zhang L. F.; Yuet K. P.; Liao G.; Rhee J. W.; Langer R.; Farokhzad O. C. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials, 2009, 30(8), 1627-1634. doi:10.1016/j.biomaterials.2008.12.013http://dx.doi.org/10.1016/j.biomaterials.2008.12.013
Kang S. Y.; Seong B. S.; Han Y. S.; Jung H. T. Self-organization of amphiphilic polymer in vesicle bilayers composed of surfactant mixtures. Biomacromolecules, 2003, 4(2), 360-365. doi:10.1021/bm025704ahttp://dx.doi.org/10.1021/bm025704a
Deygen I. M.; Seidl C.; Kolmel D. K.; Bednarek C.; Heissler S.; Kudryashova E. V.; Brase S.; Schepers U. Novel prodrug of doxorubicin modified by stearoylspermine encapsulated into PEG-chitosan-stabilized liposomes. Langmuir, 2016, 32(42), 10861-10869. doi:10.1021/acs.langmuir.6b01023http://dx.doi.org/10.1021/acs.langmuir.6b01023
Ishihara K.; Tsujino R.; Mika H.; Toyoda N.; Iwasaki Y. Stabilized liposomes with phospholipid polymers and their interactions with blood cells. Colloids Surf. B Biointerfaces, 2002, 25(4), 325-333. doi:10.1016/s0927-7765(02)00006-1http://dx.doi.org/10.1016/s0927-7765(02)00006-1
Meland H. G.; Rov-Johnsen A.; Smistad G.; Hiorth M. Studies on surface coating of phospholipid vesicles with a non-ionic polymer. Colloids Surf. B Biointerfaces, 2014, 114, 45-52. doi:10.1016/j.colsurfb.2013.09.054http://dx.doi.org/10.1016/j.colsurfb.2013.09.054
Wytrwal M.; Bednar J.; Nowakowska M.; Wydro P.; Kepczynski M. Interactions of serum with polyelectrolyte-stabilized liposomes: Cryo-TEM studies. Colloids Surf. B Biointerfaces, 2014, 120, 152-159. doi:10.1016/j.colsurfb.2014.02.040http://dx.doi.org/10.1016/j.colsurfb.2014.02.040
Marie E.; Landfester K.; Antonietti M. Synthesis of chitosan-stabilized polymer dispersions, capsules, and chitosan grafting products via miniemulsion. Biomacromolecules, 2002, 3(3), 475-481. doi:10.1021/bm015634shttp://dx.doi.org/10.1021/bm015634s
Ali S. I.; Heuts J. P. A.; van Herk A. M. Controlled synthesis of polymeric nanocapsules by RAFT-based vesicle templating. Langmuir, 2010, 26(11), 7848-7858. doi:10.1021/la904709chttp://dx.doi.org/10.1021/la904709c
Ruysschaert T.; Paquereau L.; Winterhalter M.; Fournier D. Stabilization of liposomes through enzymatic polymerization of DNA. Nano Lett., 2006, 6(12), 2755-2757. doi:10.1021/nl061724xhttp://dx.doi.org/10.1021/nl061724x
Hub H. H.; Hupfer B.; Koch H.; Ringsdorf H. Polymerizable phospholipid analogues—new stable biomembrane and cell models. Angew. Chem. Int. Ed., 1980, 19(11), 938-940. doi:10.1002/anie.198009381http://dx.doi.org/10.1002/anie.198009381
Graff A.; Winterhalter M.; Meier W. Nanoreactors from polymer-stabilized liposomes. Langmuir, 2001, 17(3), 919-923. doi:10.1021/la001306mhttp://dx.doi.org/10.1021/la001306m
Hotz J.; Meier W. Vesicle-templated polymer hollow spheres. Langmuir, 1998, 14(5), 1031-1036. doi:10.1021/la971080whttp://dx.doi.org/10.1021/la971080w
Cheng Z. L.; D'Ambruoso G. D.; Aspinwall C. A. Stabilized porous phospholipid nanoshells. Langmuir, 2006, 22(23), 9507-9511. doi:10.1021/la061542ihttp://dx.doi.org/10.1021/la061542i
Ghosh S.; Wang X. M.; Wang J. Y.; Nguyen P. D.; Janczak C. M.; Aspinwall C. A. Enhanced fluorescent protein activity in polymer scaffold-stabilized phospholipid nanoshells using neutral redox initiator polymerization conditions. ACS Omega, 2018, 3(11), 15890-15899. doi:10.1021/acsomega.8b01661http://dx.doi.org/10.1021/acsomega.8b01661
Dong Y. C.; Sun Y. W.; Wang L. Y.; Wang D. M.; Zhou T.; Yang Z. Q.; Chen Z.; Wang Q. B.; Fan Q. H.; Liu D. S. Frame-guided assembly of vesicles with programmed geometry and dimensions. Angew. Chem. Int. Ed., 2014, 53(10), 2607-2610. doi:10.1002/anie.201310715http://dx.doi.org/10.1002/anie.201310715
Dong Y. C.; Yang Y.; Lin C. X.; Liu D. S. Frame-guided assembly of amphiphiles. Acc. Chem. Res., 2022, 55(14), 1938-1948. doi:10.1021/acs.accounts.2c00234http://dx.doi.org/10.1021/acs.accounts.2c00234
Dong Y. C.; Liu D. S. Frame-guided assembly of amphiphiles. Chem. Eur. J., 2015, 21(50), 18018-18023. doi:10.1002/chem.201501849http://dx.doi.org/10.1002/chem.201501849
Piao J. F.; Yuan W.; Dong Y. C. Recent progress of DNA nanostructures on amphiphilic membranes. Macromol. Biosci., 2021, 21(5), 2000440. doi:10.1002/mabi.202200146http://dx.doi.org/10.1002/mabi.202200146
Zhou C.; Zhang Y. Y.; Dong Y. C.; Wu F.; Wang D. M.; Xin L.; Liu D. S. Precisely controlled 2d free-floating nanosheets of amphiphilic molecules through frame-guided assembly. Adv. Mater., 2016, 28(44), 9819-9823. doi:10.1002/adma.201603210http://dx.doi.org/10.1002/adma.201603210
Dong Y. C.; Yang Y. R.; Zhang Y. Y.; Wang D. M.; Wei X. X.; Banerjee S.; Liu Y.; Yang Z. Q.; Yan H.; Liu D. S. Cuboid vesicles formed by frame-guided assembly on DNA origami scaffolds. Angew. Chem. Int. Ed., 2017, 56(6), 1586-1589. doi:10.1002/anie.201610133http://dx.doi.org/10.1002/anie.201610133
Yang Y.; Wang J.; Shigematsu H.; Xu W. M.; Shih W. M.; Rothman J. E.; Lin C. X. Self-assembly of size-controlled liposomes on DNA nanotemplates. Nat. Chem., 2016, 8(5), 476-483. doi:10.1038/nchem.2472http://dx.doi.org/10.1038/nchem.2472
Wu F.; Jin J.; Wang L. Y.; Sun P. F.; Yuan H. X.; Yang Z. Q.; Chen G. S.; Fan Q. H.; Liu D. S. Functionalization of DNA-dendron supramolecular fibers and application in regulation of Escherichia Coli association. ACS Appl. Mater. Interfaces, 2015, 7(13), 7351-7356. doi:10.1021/acsami.5b00702http://dx.doi.org/10.1021/acsami.5b00702
Dong Y. C.; Yang Z. Q.; Liu D. S. Using small molecules to prepare vesicles with designable shapes and sizes via frame-guided assembly strategy. Small, 2015, 11(31), 3768-3771. doi:10.1002/smll.201500240http://dx.doi.org/10.1002/smll.201500240
Zhao Z. Y.; Chen C.; Dong Y. C.; Yang Z. Q.; Fan Q. H.; Liu D. S. Thermally triggered frame-guided assembly. Angew. Chem. Int. Ed., 2014, 53(49), 13468-13470. doi:10.1002/anie.201408231http://dx.doi.org/10.1002/anie.201408231
Zhang Z.; Yang Y.; Pincet F.; Llaguno M. C.; Lin C. X. Placing and shaping liposomes with reconfigurable DNA nanocages. Nat. Chem., 2017, 9(7), 653-659. doi:10.1038/nchem.2802http://dx.doi.org/10.1038/nchem.2802
Wang C.; Piao J. F.; Li Y. J.; Tian X. C.; Dong Y. C.; Liu D. S. Construction of liposomes mimicking cell membrane structure through frame-guided assembly. Angew. Chem. Int. Ed., 2020, 59(35), 15176-15180. doi:10.1002/anie.202005334http://dx.doi.org/10.1002/anie.202005334
Shi J. Z.; Jia H. Y.; Chen H.; Wang X.; Xu J. F.; Ren W. B.; Zhao J.; Zhou X.; Dong Y. C.; Liu D. S. Concentration insensitive supramolecular polymerization enabled by kinetically interlocking multiple units strategy. CCS Chem., 2019, 1(3), 296-303. doi:10.31635/10.31635/ccschem.019.20190009http://dx.doi.org/10.31635/10.31635/ccschem.019.20190009
Li Y. J., Ding Y. Q., Yang B., Cao T. Y., Xu J. F., Dong Y. C., Chen Q., Xu L. J., Liu D. S.; Reinforcing DNA supramolecular hydrogel with polymeric multiple-unit linker. CCS Chem., 2022, Doi: 10.31635/ccschem.022.202101523http://dx.doi.org/10.31635/ccschem.022.202101523.
Wang H. Y.; Jia H. R.; Lu X. L.; Chen B.; Zhou G. X.; He N. Y.; Chen Z.; Wu F. G. Imaging plasma membranes without cellular internalization: multisite membrane anchoring reagents based on glycol chitosan derivatives. J. Mater. Chem. B, 2015, 3(30), 6165-6173. doi:10.1039/c5tb00930hhttp://dx.doi.org/10.1039/c5tb00930h
0
Views
83
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution