浏览全部资源
扫码关注微信
北京理工大学化学与化工学院 北京 102488
Kang-cheng Chen, E-mail: chenkc@bit.edu.cn
Published:20 April 2023,
Published Online:03 November 2022,
Received:08 September 2022,
Accepted:30 September 2022
扫 描 看 全 文
胡晨星,陈星,吴芹等.大侧基链接剂制备嵌段磺化聚芳醚砜质子交换膜及其性能研究[J].高分子学报,2023,54(04):496-508.
Hu Chen-xing,Chen Xing,Wu Qin,et al.Preparation of Blocked Sulfonated Polyaryle Ether Sulfone and Its Proton Exchange Membrane Properties[J].ACTA POLYMERICA SINICA,2023,54(04):496-508.
胡晨星,陈星,吴芹等.大侧基链接剂制备嵌段磺化聚芳醚砜质子交换膜及其性能研究[J].高分子学报,2023,54(04):496-508. DOI: 10.11777/j.issn1000-3304.2022.22307.
Hu Chen-xing,Chen Xing,Wu Qin,et al.Preparation of Blocked Sulfonated Polyaryle Ether Sulfone and Its Proton Exchange Membrane Properties[J].ACTA POLYMERICA SINICA,2023,54(04):496-508. DOI: 10.11777/j.issn1000-3304.2022.22307.
以含苯侧基的对二(苯羰基四氟苯)为链接剂,以4
4'-二氟二苯砜分别与4
4'-二羟基二苯砜和4
4'-联苯二酚作为疏水和亲水嵌段前体,合成一系列高分子量的有序和无序的嵌段磺化聚芳醚砜(SPAES).
1
H-NMR显示所制备的嵌段型SPAES的磺化位点和预测的一致,且离子交换容量(IEC)的滴定值是理论值的95%以上,说明磺化位置和磺化度精确可控. SPAES质子交换膜的杨氏模量、拉伸应力和断裂伸长率高达1.92 GPa、75 MPa和58%. TGA结果表明嵌段SPAES具有两段失重,分别对应320 ℃左右磺化基团脱出,以及500 ℃以上聚合物骨架分解. 相似IEC,具有苯环大侧基链接剂的SPAES的吸水率随温度变化要明显小于无链接剂SPAES,在膜面方向尺寸变化率两者相当,均为8%左右. 具有相似IEC的有链接剂的有序嵌段型SPAES,如MB9 (IEC=1.68 mmol·g
-1
) 的质子传导率为无链接剂嵌段型SPAES B2 (IEC=1.70 mmol·g
-1
) 的1.2倍以上. 这是由于链接剂苯环侧链结构使得膜内自由体积增加有利于质子传导. 同样,有序嵌段型SPAES PEM的质子传导率高于相同IEC的无序嵌段型.
A series of high molecular weight ordered and disordered block sulfonated polyaryle ether sulfone (SPAES) were synthesized using phenyl-containing
p
-bis(phenylene-tetrafluorobenzene) as a linking agent
with 4
4'-difluorodiphenyl sulfone and 4
4'-dihydroxydiphenyl sulfone and 4
4'-biphenyl sulfone as hydrophobic and hydrophilic block precursors
respectively. The
1
H-NMR showed that the sulfonation site of the prepared block SPAES was consistent with the prediction
and the titration value of the ion exchange capacity (IEC) was more than 95% of the theoretical value
indicating that the sulfonation position and sulfonation degree were precisely controllable. The Young's modulus
tensile stress and elongation at break of the SPAES proton exchange membrane in this work are as high as 1.92 GPa
75 MPa and 58%. The TGA results show that the block SPAES in this work has two stages of weightlessness
namely sulfonated group detachment at about 320 ℃ and polymer skeleton decomposition above 500 ℃. Similar to IEC
the water absorption rate of SPAES with benzene ring large side linker varies significantly less with temperature than that of linkless SPAES
and the rate of change in the size of the membrane surface direction is comparable
both of which are about 8%. The proton conductivity of ordered blocked SPAES with linking agents with similar IEC
such as MB9 (IEC = 1.68 mmol·g
-1
)
is more than 1.2 times that of linkless blocked SPAES B2 (IEC = 1.70 mmol·g
-1
). This is due to the benzene ring side chain structure of the linker so that the free volume in the membrane increases favors proton conduction. Similarly
the proton conductivity of ordered blocked SPAES PEM is higher than that of the same IEC type of disordered block.
磺化聚芳醚砜链接剂质子交换膜后磺化法可控磺化度
Sulfonated polyaryle ether sulfoneLinking agentProton exchange membranePost-sulfonatingControllable degree of sulfonation
Feng K.; Tang B. B.; Wu P. Y. Sulfonated graphene oxide-silica for highly selective Nafion-based proton exchange membranes. J. Mater. Chem. A, 2014, 2(38), 16083-16092. doi:10.1039/c4ta03207ahttp://dx.doi.org/10.1039/c4ta03207a
Mukherjee R.; Banerjee S.; Komber H.; Voit B. Carboxylic acid functionalized fluorinated sulfonated poly(arylene ether sulfone) copolymers with enhanced oxidative stability. J. Membr. Sci., 2016, 510, 497-509. doi:10.1016/j.memsci.2016.03.028http://dx.doi.org/10.1016/j.memsci.2016.03.028
Li H. T.; Cui Z. M.; Zhao C. J.; Wu J.; Fu T. Z.; Zhang Y.; Shao K.; Zhang H. Q.; Na H.; Xing W. Synthesis and property of a novel sulfonated poly(ether ether ketone) with high selectivity for direct methanol fuel cell applications. J. Membr. Sci., 2009, 343(1-2), 164-170. doi:10.1016/j.memsci.2009.07.021http://dx.doi.org/10.1016/j.memsci.2009.07.021
Oh H. J.; Freeman B. D.; McGrath J. E.; Ellison C. J.; Mecham S.; Lee K. S.; Paul D. R. Rheological studies of disulfonated poly(arylene ether sulfone) plasticized with poly(ethylene glycol) for membrane formation. Polymer, 2014, 55(6), 1574-1582. doi:10.1016/j.polymer.2014.02.011http://dx.doi.org/10.1016/j.polymer.2014.02.011
Zhang X.; Lu Y.; Yan X.; Hu Z.; Chen S. Sulfonated oligomer-crosslinked fluorinated poly(aryl ether sulfone)-based proton exchange membranes for fuel cells. Fuel Cells, 2018, 18(4), 397-407. doi:10.1002/fuce.201700166http://dx.doi.org/10.1002/fuce.201700166
王飞龙, 冉冬琴, 张彤, 毕慧平, 胡朝霞, 陈守文. 嵌段磺化聚芳醚砜阳离子交换膜的制备及在MFC中的发电性能研究. 高分子学报, 2014, (5), 657-663.
汪称意, 周远鹏, 徐常, 赵晓燕, 李坚, 任强. 一类含多磺酸结构侧链型聚芳醚酮质子交换膜材料的合成及性能研究. 高分子学报, 2018, (9), 1194-1201. doi:10.11777/j.issn1000-3304.2018.18010http://dx.doi.org/10.11777/j.issn1000-3304.2018.18010
李玉邯, 金日哲, 高连勋. 侧链含氮原子磺化聚酰亚胺膜材料的制备及其性能研究. 高分子学报, 2014, (8), 1096-1102. doi:10.11777/j.issn1000-3304.2014.13462http://dx.doi.org/10.11777/j.issn1000-3304.2014.13462
Shiino K.; Otomo T.; Yamada T.; Arima H.; Hiroi K.; Takata S.; Miyake J.; Miyatake K. Structural investigation of sulfonated polyphenylene ionomers for the design of better performing proton-conductive membranes. ACS Appl. Polym. Mater., 2020, 2(12), 5558-5565. doi:10.1021/acsapm.0c00895http://dx.doi.org/10.1021/acsapm.0c00895
沈斌, 汪称意, 徐常, 陈文涛, 李坚, 任强. 一类侧链型磺化聚芳醚砜质子交换膜的合成及表征. 高分子学报, 2016, (10), 1409-1417. doi:10.11777/j.issn1000-3304.2016.16015http://dx.doi.org/10.11777/j.issn1000-3304.2016.16015
Pirali-Hamedani M.; Mehdipour-Ataei S. Effect of sulfonation degree on molecular weight, thermal stability, and proton conductivity of poly(arylene ether sulfone)s membrane. Des. Monomers Polym., 2017, 20(1), 54-65. doi:10.1080/15685551.2016.1231035http://dx.doi.org/10.1080/15685551.2016.1231035
Badami A. S.; Roy A.; Lee H. S.; Li Y. X.; McGrath J. E. Morphological investigations of disulfonated poly(arylene ether sulfone)-b-naphthalene dianhydride-based polyimide multiblock copolymers as potential high temperature proton exchange membranes. J. Membr. Sci., 2009, 328(1-2), 156-164. doi:10.1016/j.memsci.2008.12.007http://dx.doi.org/10.1016/j.memsci.2008.12.007
Behl M.; Balk M.; Mansfeld U.; Lendlein A. Phase morphology of multiblock copolymers differing in sequence of blocks. Macromol. Mater. Eng., 2021, 306(3), 2000672. doi:10.1002/mame.202000672http://dx.doi.org/10.1002/mame.202000672
Roy A.; Lee H. S.; McGrath J. E. Hydrophilic-hydrophobic multiblock copolymers based on poly(arylene ether sulfone)s as novel proton exchange membranes - Part B. Polymer, 2008, 49(23), 5037-5044. doi:10.1016/j.polymer.2008.08.046http://dx.doi.org/10.1016/j.polymer.2008.08.046
Schönberger F.; Kerres J. Novel multiblock-co-ionomers as potential polymer electrolyte membrane materials. J. Polym. Sci., PartA: Polym. Chem., 2007, 45(22), 5237-5255. doi:10.1002/pola.22269http://dx.doi.org/10.1002/pola.22269
Ahn S. M.; Kim T. H.; Yuk J.; Jeong H. Y.; Yu D. M.; Hong S. K.; Hong Y. T.; Lee J. C.; Kim T. H. Perfluorocyclobutyl-containing multiblock copolymers to induce enhanced hydrophilic/hydrophobic phase separation and high proton conductivity at low humidity. J. Membr. Sci., 2022, 641, 119892. doi:10.1016/j.memsci.2021.119892http://dx.doi.org/10.1016/j.memsci.2021.119892
Awasthi S.; Kiran V.; Gaur B. Influence of hydrophobic block length and ionic liquid on the performance of multiblock poly(arylene ether) proton exchange membrane. Int. J. Hydrog. Energy, 2017, 42(16), 11710-11723. doi:10.1016/j.ijhydene.2017.03.018http://dx.doi.org/10.1016/j.ijhydene.2017.03.018
Rowlett J. R.; Shaver A. T.; Mecham S.; Riffle J. S.; McGrath J. E. Membrane properties of trisulfonated hydrophilic and partially fluorinated hydrophobic multiblock copolymer. Polymer, 2021, 226, 123810. doi:10.1016/j.polymer.2021.123810http://dx.doi.org/10.1016/j.polymer.2021.123810
Yin Y. H.; Li H. B.; Wu H.; Wang W.; Jiang Z. Y. Enhancement in proton conductivity by blending poly(polyoxometalate)-b-poly(hexanoic acid) block copolymers with sulfonated polysulfone. Int. J. Hydrog. Energy, 2020, 45(31), 15495-15506. doi:10.1016/j.ijhydene.2020.04.039http://dx.doi.org/10.1016/j.ijhydene.2020.04.039
Yuk J.; Lee S.; Nugraha A. F.; Lee H.; Park S. H.; Yim S. D.; Bae B. Synthesis and characterization of multi-block poly(arylene ether sulfone) membranes with highly sulfonated blocks for use in polymer electrolyte membrane fuel cells. J. Membr. Sci., 2016, 518, 50-59. doi:10.1016/j.memsci.2016.06.037http://dx.doi.org/10.1016/j.memsci.2016.06.037
Roy A.; Hickner M. A.; Yu X.; Li Y. X.; Glass T. E.; McGrath J. E. Influence of chemical composition and sequence length on the transport properties of proton exchange membranes. J. Polym. Sci., PartB: Polym. Phys., 2006, 44(16), 2226-2239. doi:10.1002/polb.20859http://dx.doi.org/10.1002/polb.20859
Lee M.; Park J. K.; Lee H. S.; Lane O.; Moore R. B.; McGrath J. E.; Baird D. G. Effects of block length and solution-casting conditions on the final morphology and properties of disulfonated poly(arylene ether sulfone) multiblock copolymer films for proton exchange membranes. Polymer, 2009, 50(25), 6129-6138. doi:10.1016/j.polymer.2009.10.023http://dx.doi.org/10.1016/j.polymer.2009.10.023
Lee H. S.; Roy A.; Lane O.; Dunn S.; McGrath J. E. Hydrophilic-hydrophobic multiblock copolymers based on poly(arylene ether sulfone) via low-temperature coupling reactions for proton exchange membrane fuel cells. Polymer, 2008, 49(3), 715-723. doi:10.1016/j.polymer.2007.12.023http://dx.doi.org/10.1016/j.polymer.2007.12.023
Badami A. S.; Lane O.; Lee H. S.; Roy A.; McGrath J. E. Fundamental investigations of the effect of the linkage group on the behavior of hydrophilic-hydrophobic poly(arylene ether sulfone) multiblock copolymers for proton exchange membrane fuel cells. J. Membr. Sci., 2009, 333(1-2), 1-11. doi:10.1016/j.memsci.2008.12.066http://dx.doi.org/10.1016/j.memsci.2008.12.066
Chen X.; Xiao L.; Qiu X. S.; Chen K. C. Properties of multiblock sulfonated poly(arylene ether sulfone)s synthesized by precise controllable post-sulfonation for proton exchange membranes. Chinese J. Polym. Sci., 2022, 40(7), 754-763. doi:10.1007/s10118-022-2713-5http://dx.doi.org/10.1007/s10118-022-2713-5
Xie Y. J.; Liu D.; Li D. Q.; Han X. C.; Li S.; Chen Z.; Zhang H. B.; Pang J. H.; Jiang Z. H. Highly proton conducting proton-exchange membranes based on fluorinated poly(arylene ether ketone)s with octasulfonated segments. J. Polym. Sci., PartA: Polym. Chem., 2018, 56(1), 25-37. doi:10.1002/pola.28857http://dx.doi.org/10.1002/pola.28857
Kim A. R.; Vinothkannan M.; Song M. H.; Lee J. Y.; Lee H. K.; Yoo D. J. Amine functionalized carbon nanotube (ACNT) filled in sulfonated poly(ether ether ketone) membrane: Effects of ACNT in improving polymer electrolyte fuel cell performance under reduced relative humidity. Compos. Part B: Eng., 2020, 188, 107890. doi:10.1016/j.compositesb.2020.107890http://dx.doi.org/10.1016/j.compositesb.2020.107890
He F. G.; Wang S. P.; Yuan D.; Weng Q.; Chen P.; Chen X. B.; An Z. W. Crosslinked poly(arylene ether sulfone) block copolymers containing quinoxaline crosslinkage and pendant butanesulfonic acid groups as proton exchange membranes. Int. J. Hydrog. Energy, 2020, 45(46), 25262-25275. doi:10.1016/j.ijhydene.2020.06.149http://dx.doi.org/10.1016/j.ijhydene.2020.06.149
Li G.; Xie J.; Cai H. F.; Qiao J. L. New highly proton-conducting membrane based on sulfonated poly(arylene ether sulfone)s containing fluorophenyl pendant groups, for low-temperature polymer electrolyte membrane fuel cells. Int. J. Hydrog. Energy, 2014, 39(6), 2639-2648. doi:10.1016/j.ijhydene.2013.11.049http://dx.doi.org/10.1016/j.ijhydene.2013.11.049
Ureña N.; Pérez-Prior M. T.; Levenfeld B.; García-Salaberri P. A. On the conductivity of proton-exchange membranes based on multiblock copolymers of sulfonated polysulfone and polyphenylsulfone: an experimental and modeling study. Polym. Basel, 2021, 13(3), 363. doi:10.3390/polym13030363http://dx.doi.org/10.3390/polym13030363
0
Views
49
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution