浏览全部资源
扫码关注微信
1.南开大学化学学院 高分子化学研究所 天津 300071
2.天津工业大学材料科学与工程学院 天津 300387
3.中国科学院大学温州研究院 温州 325001
Fei-he Ma, E-mail: feihema@tiangong.edu.cn
Lin-qi Shi, E-mail: shilinqi@nankai.edu.cn
Published:20 May 2023,
Published Online:18 November 2022,
Received:12 September 2022,
Accepted:25 October 2022
扫 描 看 全 文
邓飞,刘勇,马如江等.具有可见光响应聚合物纳米粒子的制备及性能研究[J].高分子学报,2023,54(05):665-674.
Deng Fei,Liu Yong,Ma Ru-jiang,et al.Preparation and Characterization of Visible Light-responsive Polymer Nanoparticles[J].ACTA POLYMERICA SINICA,2023,54(05):665-674.
邓飞,刘勇,马如江等.具有可见光响应聚合物纳米粒子的制备及性能研究[J].高分子学报,2023,54(05):665-674. DOI: 10.11777/j.issn1000-3304.2022.22309.
Deng Fei,Liu Yong,Ma Ru-jiang,et al.Preparation and Characterization of Visible Light-responsive Polymer Nanoparticles[J].ACTA POLYMERICA SINICA,2023,54(05):665-674. DOI: 10.11777/j.issn1000-3304.2022.22309.
利用可见光响应供体-受体Stenhouse加合物(DASAs)设计并制备了2种表面含有可见光响应单元的聚合物纳米粒子,并对纳米粒子的光响应性进行了研究. 首先合成了修饰DASA分子的聚合物PGMD,研究结果表明PGMD可溶于与水互溶的有机溶剂(如DMSO)中并具有良好的光响应性,PGMD链段可在可见光刺激下响应为亲水状态. 因此,含有PGMD链段的嵌段共聚物PCL-
b
-PGMD可在水中自组装形成胶束,并能与PCL-
b
-PEG在水中共组装形成复合壳层胶束,但PGMD链段在水中无法可逆响应为疏水状态. 为获得具有可逆响应性的聚合物纳米粒子,利用硅烷偶联剂水解修饰的方法得到表面含有疏水三烯状态 DASA分子与亲水PEG短链的复合壳层二氧化硅纳米粒子,实验结果表明复合壳层二氧化硅纳米粒子在水环境中有良好的分散稳定性,并且表面修饰的DASA分子仍具有良好的响应性. 本研究为设计表面性质可调的响应性聚合物纳米粒子提供了新的设计思路.
In this report
we prepared two kinds of polymeric nanoparticles with visible light-responsive units on the surface by using visible light-responsive donor-acceptor Stenhouse adducts (DASAs) and studied their light responsiveness. First
we synthesized the polymer of PGMD modified with DASA molecule. The result indicates that PGMD is soluble in water-miscible organic solvents (such as DMSO) and it can convert to hydrophilic state under visible light irradiation. Therefore
the block copolymer PCL-
b
-PGMD with PGMD segment can self-assemble to form micelles in water
and it can co-assemble with PCL-
b
-PEG to form mixed-shell micelles (MSPMs) in water. However
the polymer segment PGMD modified with DASA molecules on the surface of MSPMs cannot be switched to the hydrophobic state reversibly. In order to obtain the polymer nanoparticles with reversible response
we prepared the mixed-shell silica nanoparticles with hydrophobic triene state DASA molecules and hydrophilic PEG short chains on the surface
and the mixed-shell silica nanoparticles were prepared through the silane coupling agent hydrolysis modification method. The result demonstrates that the mixed-shell silica nanoparticles can be stably dispersed in water
and the DASA molecules modified on the surface of the mixed-shell silica nanoparticles still retain its great responsiveness. This work provides a great idea for designing responsive polymer nanoparticles with tunable property surface.
可见光响应复合胶束聚合物纳米粒子供体-受体Stenhouse加合物
Visible light-responsiveMixed-shell micellesPolymer nanoparticlesDonor-acceptor Stenhouse adducts
Wang C.; O’hagan M. P.; Li Z. Y.; Zhang J. J.; Ma X.; Tian H.; Willner I. Photoresponsive DNA materials and their applications. Chem. Soc. Rev., 2022, 51(2), 720-760. doi:10.1039/d1cs00688fhttp://dx.doi.org/10.1039/d1cs00688f
Abdollahi A.; Roghani-Mamaqani H.; Razavi B.; Salami-Kalajahi M. The light-controlling of temperature-responsivity in stimuli-responsive polymers. Polym. Chem., 2019, 10(42), 5686-5720. doi:10.1039/c9py00890jhttp://dx.doi.org/10.1039/c9py00890j
Huang F. J.; Liao W. C.; Sohn Y. S.; Nechushtai R.; Lu C. H.; Willner I. Light-responsive and pH-responsive DNA microcapsules for controlled release of loads. J. Am. Chem. Soc., 2016, 138(28), 8936-8945. doi:10.1021/jacs.6b04773http://dx.doi.org/10.1021/jacs.6b04773
Zhang X.; Wang S.; Cheng G. H.; Yu P.; Chang J. Light-responsive nanomaterials for cancer therapy. Engineering, 2022, 13, 18-30. doi:10.1016/j.eng.2021.07.023http://dx.doi.org/10.1016/j.eng.2021.07.023
Zhu H.; Chen D.; Li N.; Xu Q.; Li H.; He J.; Wang H.; Wu P.; Lu J. Fabrication of photocontrolled surfaces for oil/water separation through sulfur(VI) fluoride exchange. Chem. Eur. J., 2019, 25(69), 14712-14717. doi:10.1002/chem.201904920http://dx.doi.org/10.1002/chem.201904920
Nayak A.; Liu H.; Belfort G. An optically reversible switching membrane surface. Angew. Chem. Int. Ed. Engl., 2006, 45(25), 4094-4098. doi:10.1002/anie.200600581http://dx.doi.org/10.1002/anie.200600581
Vlassiouk I.; Park C. D.; Vail S. A.; Gust D.; Smirnov S. Control of nanopore wetting by a photochromic spiropyran: A light-controlled valve and electrical switch. Nano Lett., 2006, 6(5), 1013-1017. doi:10.1021/nl060313dhttp://dx.doi.org/10.1021/nl060313d
Alonso-Cristobal P.; Oton-Fernandez O.; Mendez-Gonzalez D.; Díaz J. F.; Lopez-Cabarcos E.; Barasoain I.; Rubio-Retama J. Synthesis, characterization, and application in HeLa cells of an NIR light responsive doxorubicin delivery system based on NaYF4: Yb, Tm@SiO2-PEG nanoparticles. ACS Appl. Mater. Interfaces, 2015, 7(27), 14992-14999. doi:10.1021/acsami.5b03881http://dx.doi.org/10.1021/acsami.5b03881
Martínez-Carmona M.; Lozano D.; Baeza A.; Colilla M.; Vallet-Regí M. A novel visible light responsive nanosystem for cancer treatment. Nanoscale, 2017, 9(41), 15967-15973. doi:10.1039/c7nr05050jhttp://dx.doi.org/10.1039/c7nr05050j
Zhu L. Y.; Zhu M. Q.; Hurst J. K.; Li A. D. Q. Light-controlled molecular switches modulate nanocrystal fluorescence. J. Am. Chem. Soc., 2005, 127(25), 8968-8970. doi:10.1021/ja0423421http://dx.doi.org/10.1021/ja0423421
Huebner D.; Rossner C.; Vana P. Light-induced self-assembly of gold nanoparticles with a photoresponsive polymer shell. Polymer, 2016, 107, 503-508. doi:10.1016/j.polymer.2016.05.073http://dx.doi.org/10.1016/j.polymer.2016.05.073
Helmy S.; Oh S.; Leibfarth F. A.; Hawker C. J.; Read de Alaniz J. Design and synthesis of donor-acceptor stenhouse adducts: A visible light photoswitch derived from furfural. J. Org. Chem., 2014, 79(23), 11316-11329. doi:10.1021/jo502206ghttp://dx.doi.org/10.1021/jo502206g
Helmy S.; Leibfarth F. A.; Oh S.; Poelma J. E.; Hawker C. J.; Read de Alaniz J. Photoswitching using visible light: A new class of organic photochromic molecules. J. Am. Chem. Soc., 2014, 136(23), 8169-8172. doi:10.1021/ja503016bhttp://dx.doi.org/10.1021/ja503016b
Hemmer J. R.; Poelma S. O.; Treat N.; Page Z. A.; Dolinski N. D.; Diaz Y. J.; Tomlinson W.; Clark K. D.; Hooper J. P.; Hawker C.; Read de Alaniz J. Tunable visible and near infrared photoswitches. J. Am. Chem. Soc., 2016, 138(42), 13960-13966. doi:10.1021/jacs.6b07434http://dx.doi.org/10.1021/jacs.6b07434
Hemmer J. R.; Page Z. A.; Clark K. D.; Stricker F.; Dolinski N. D.; Hawker C. J.; Read de Alaniz J. Controlling dark equilibria and enhancing donor-acceptor stenhouse adduct photoswitching properties through carbon acid design. J. Am. Chem. Soc., 2018, 140(33), 10425-10429. doi:10.1021/jacs.8b06067http://dx.doi.org/10.1021/jacs.8b06067
Poelma S. O.; Oh S. S.; Helmy S.; Knight A. S.; Burnett G. L.; Soh H. T.; Hawker C. J.; Read de Alaniz J. Controlled drug release to cancer cells from modular one-photon visible light-responsive micellar system. Chem. Commun. Camb. Engl., 2016, 52(69), 10525-10528. doi:10.1039/c6cc04127bhttp://dx.doi.org/10.1039/c6cc04127b
Senthilkumar T.; Zhou L. Y.; Gu Q.; Liu L. B.; Lv F. T.; Wang S. Conjugated polymer nanoparticles with appended photo‐responsive units for controlled drug delivery, release, and imaging. Ang. Chem. Int. Ed., 2018, 57(40), 13114-13119. doi:10.1002/anie.201807158http://dx.doi.org/10.1002/anie.201807158
Yap J. E.; Zhang L.; Lovegrove J. T.; Beves J. E.; Stenzel M. H. Visible light-responsive drug delivery nanoparticle via donor-acceptor stenhouse adducts (DASA). Macromol. Rapid Commun., 2020, 41(21), e2000236. doi:10.1002/marc.202000236http://dx.doi.org/10.1002/marc.202000236
Zhao H. Q.; Wang D. S.; Fan Y.; Ren M. R.; Dong S. M.; Zheng Y. H. Surface with reversible green-light-switched wettability by donor-acceptor stenhouse adducts. Langmuir, 2018, 34(50), 15537-15543. doi:10.1021/acs.langmuir.8b03296http://dx.doi.org/10.1021/acs.langmuir.8b03296
Sinawang G.; Wu B.; Wang J. L.; Li S.; He Y. N. Polystyrene based visible light responsive polymer with donor-acceptor stenhouse adduct pendants. Macromol. Chem. Phys., 2016, 217(21), 2409-2414. doi:10.1002/macp.201600351http://dx.doi.org/10.1002/macp.201600351
Zhong D.; Cao Z. Q.; Wu B.; Zhang Q.; Wang G. J. Polymer dots of DASA-functionalized polyethyleneimine: Synthesis, visible light/pH responsiveness, and their applications as chemosensors. Sens. Actuat. B Chem., 2018, 254, 385-392. doi:10.1016/j.snb.2017.07.107http://dx.doi.org/10.1016/j.snb.2017.07.107
Chen Y. K.; Li Z. Y.; Wang H. Y.; Pei Y. C.; Shi Y. L.; Wang J. J. Visible light-controlled inversion of Pickering emulsions stabilized by functional silica microspheres. Langmuir, 2018, 34(8), 2784-2790. doi:10.1021/acs.langmuir.7b03822http://dx.doi.org/10.1021/acs.langmuir.7b03822
Singh S.; Mai P.; Borowiec J.; Zhang Y.; Lei Y.; Schober A. Donor-acceptor Stenhouse adduct-grafted polycarbonate surfaces: Selectivity of the reaction for secondary amine on surface. Royal Soc. Open Sci., 2018, 5(7), 180207. doi:10.1098/rsos.180207http://dx.doi.org/10.1098/rsos.180207
Lerch M. M.; Szymański W.; Feringa B. L. The (photo)chemistry of Stenhouse photoswitches: Guiding principles and system design. Chem. Soc. Rev., 2018, 47(6), 1910-1937. doi:10.1039/c7cs00772hhttp://dx.doi.org/10.1039/c7cs00772h
张希, 王力彦, 徐江飞, 陈道勇, 史林启, 周永丰, 沈志豪. 聚合物超分子体系: 设计、组装与功能. 高分子学报, 2019, 50(10), 973-987. doi:10.11777/j.issn1000-3304.2019.19no6http://dx.doi.org/10.11777/j.issn1000-3304.2019.19no6
张海霞, 宋伊晴, 安英丽, 王影, 史林启. 复合胶束辅助蛋白酶复性的研究. 高分子学报, 2014, (12), 1561-1567. doi:10.11777/j.issn1000-3304.2014.14096http://dx.doi.org/10.11777/j.issn1000-3304.2014.14096
Zhu L., Zhang M. Q., Jing H. R., Zhang X. P., Xu L. L., Ma R. J., Huang F., Shi L. Q. Bioinspired self-assembly nanochaperone inhibits tau-derived PHF6 peptide aggregation in Alzheimer's disease. Chinese J. Polym. Sci., 2022, 40 (9), 1062-1070. doi:10.1007/s10118-022-2799-9http://dx.doi.org/10.1007/s10118-022-2799-9
Wang D. S.; Zhao L.; Zhao H. Q.; Wu J. Z.; Wagner M.; Sun W.; Liu X. D.; Miao M. S.; Zheng Y. H. Inducing molecular isomerization assisted by water. Commun. Chem., 2019, 2, 118. doi:10.1038/s42004-019-0221-5http://dx.doi.org/10.1038/s42004-019-0221-5
0
Views
61
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution