浏览全部资源
扫码关注微信
纤维材料改性国家重点实验室 东华大学先进低维材料中心 材料科学与工程学院 上海 201620
Shu-guang Yang, E-mail: shgyang@dhu.edu.cn
Published:20 April 2023,
Published Online:01 December 2022,
Received:17 September 2022,
Accepted:14 November 2022
扫 描 看 全 文
王伟杰,张彩虹,黄浩等.微相分离结合氢键复合构筑弹性体[J].高分子学报,2023,54(04):487-495.
Wang Wei-jie,Zhang Cai-hong,Huang Hao,et al.Combining Microphase Separation and Hydrogen-bonding Complexation to Construct Elastomer[J].ACTA POLYMERICA SINICA,2023,54(04):487-495.
王伟杰,张彩虹,黄浩等.微相分离结合氢键复合构筑弹性体[J].高分子学报,2023,54(04):487-495. DOI: 10.11777/j.issn1000-3304.2022.22314.
Wang Wei-jie,Zhang Cai-hong,Huang Hao,et al.Combining Microphase Separation and Hydrogen-bonding Complexation to Construct Elastomer[J].ACTA POLYMERICA SINICA,2023,54(04):487-495. DOI: 10.11777/j.issn1000-3304.2022.22314.
通过嵌段聚合物的微相分离和高分子氢键复合,使用聚苯乙烯-
b
-聚丙烯酸-
b
-聚苯乙烯(SAS)三嵌段聚合物和聚氧化乙烯(PEO)均聚物构筑了具有多层次结构的弹性体(SA/E). 聚丙烯酸(PAA)与PEO形成柔性的氢键复合物(PAA/PEO),刚性的聚苯乙烯(PS)与PAA和PEO不相容而发生微相分离,PS作为交联点连接着柔性的PAA/PEO. 与PAA/PEO氢键复合物相比,SA/E弹性体力学性能明显提升,通过控制PS质量分数可调节弹性体的模量和强度等力学性能. SA/E弹性体表现出湿度敏感性. 并且弹性体经拉伸训练后可获得一定的取向性,弹性回复率保持在98%以上. 本弹性体在湿度传感、柔性器件、医用材料等领域具有潜在应用,为构筑新型弹性体提供思路.
By integrating the microphase separation and hydrogen-bonding complexation
here
triblock copolymer polystyrene-
b
-poly(acrylic acid)-
b
-polystyrene (SAS) and homopolymer poly(ethylene oxide) (PEO) were used to construct the elastomer (SA/E) with different hierarchical structures. Poly(acrylic acid) (PAA) and PEO can form flexible and stretchable hydrogen-bonded complex. Polystyrene (PS) is neither compatible with PAA nor PEO
and the microphase separation structure will be formed when SAS is associated with PEO. The vitrified PS domains acted as physical cross-link points for soft PAA/PEO hydrogen-bonding complex domains. Compared with PAA/PEO homopolymer hydrogen-bonding complex
the SA/E elastomer shows higher modulus and strength
while maintain the considerable breaking elongation. By changing the PS molecular weight fraction
the SA/E can assemble to various microphase structures and present different mechanical and elastic properties. In addition
the SA/E shows excellent humidity adaptable behavior. The SA/E has different mechanical strengths at different relative humidity conditions. The moisture absorbed in SA/E can serve as plasticizer to enhance the flexibility of PAA/PEO hydrogen-bonding complex domains. Moreover
by cyclic stretching-releasing training
the elastic recovery ratio of SA/E is significantly improved
up to 98%. The elastomer has potential application in smart sensors
flexible devices
and advanced medical materials. This research also provides new methods and ideas for constructing new elastic materials.
弹性体高分子复合物嵌段聚合物微相分离氢键复合
ElastomerPolymer complexBlock-copolymerMicrophase separationHydrogen-bonding association
Krol P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog. Mater. Sci., 2007, 52(6), 915-1015. doi:10.1016/j.pmatsci.2006.11.001http://dx.doi.org/10.1016/j.pmatsci.2006.11.001
Drobny J. G. Handbook of Thermoplastic Elastomers: Second Edition. Waltham: Elsevier, 2014. doi:10.1016/b978-0-323-22136-8.05001-8http://dx.doi.org/10.1016/b978-0-323-22136-8.05001-8
Young R. J.; Lovell P. A. Introduction to Polymers: Second Edition. London: Chapman & Hall, 1991. doi:10.1007/978-1-4899-3176-4http://dx.doi.org/10.1007/978-1-4899-3176-4
Walther, A. Viewpoint: From responsive to adaptive and interactive materials and materials systems: a roadmap. Adv. Mater., 2020, 32(20), e1905111. doi:10.1002/adma.201905111http://dx.doi.org/10.1002/adma.201905111
Vatankhah-Varnosfaderani M.; Keith A. N.; Cong Y.; Liang H.; Rosenthal M.; Sztucki M.; Clair C.; Magonov S.; Ivanov D. A.; Dobrynin A. V.; Sheiko S. S. Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science, 2018, 359(6383), 1509-1513. doi:10.1126/science.aar5308http://dx.doi.org/10.1126/science.aar5308
Cui B.; Wu Q. Y.; Gu L.; Shen L.; Yu H. B. High performance bio-based polyurethane elastomers: effect of different soft and hard segments. Chinese J. Polym. Sci., 2016, 34(7), 901-909. doi:10.1007/s10118-016-1811-7http://dx.doi.org/10.1007/s10118-016-1811-7
Merindol R.; Walther A. Materials learning from life: Concepts for active, adaptive and autonomous molecular systems. Chem. Soc. Rev., 2017, 46(18), 5588-5619. doi:10.1039/c6cs00738dhttp://dx.doi.org/10.1039/c6cs00738d
Herzberger J.; Sirrine J. M.; Williams C. B.; Long T. E. Polymer design for 3printingD: recent advances in structure, properties, and printing. Prog. Polym. Sci., 2019, 97, 101144. doi:10.1016/j.progpolymsci.2019.101144http://dx.doi.org/10.1016/j.progpolymsci.2019.101144
Zhuo Y. Z.; Xia Z. J.; Qi Y.; Sumigawa T.; Wu J. Y.; Šesták P.; Lu Y. N.; Håkonsen V.; Li T.; Wang F.; Chen W.; Xiao S. B.; Long R.; Kitamura T.; Li L. B.; He J. Y.; Zhang Z. L. Simultaneously toughening and stiffening elastomers with octuple hydrogen bonding. Adv. Mater., 2021, 33(23), e2008523. doi:10.1002/adma.202008523http://dx.doi.org/10.1002/adma.202008523
Tu Z. K.; Liu W. F.; Wang J.; Qiu X. Q.; Huang J. H.; Li J. X.; Lou H. M. Biomimetic high performance artificial muscle built on sacrificial coordination network and mechanical training process. Nat. Commun., 2021, 12, 2916. doi:10.1038/s41467-021-23204-xhttp://dx.doi.org/10.1038/s41467-021-23204-x
Li Z. Q.; Zhu Y. L.; Niu W. W.; Yang X.; Jiang Z. Y.; Lu Z. Y.; Liu X. K.; Sun J. Q. Healable and recyclable elastomers with record-high mechanical robustness, unprecedented crack tolerance, and superhigh elastic restorability. Adv. Mater., 2021, 33(27), e2101498. doi:10.1002/adma.202101498http://dx.doi.org/10.1002/adma.202101498
Zhu J. J.; Chen G. Y.; Yu L.; Xu H. L.; Liu X. K.; Sun J. Q. Mechanically strong and highly stiff supramolecular polymer composites repairable at ambient conditions. CCS Chem., 2020, 2(4), 280-292. doi:10.31635/ccschem.020.201900118http://dx.doi.org/10.31635/ccschem.020.201900118
Wang X. H.; Zhan S. N.; Lu Z. Y.; Li J.; Yang X.; Qiao Y. N.; Men Y. F.; Sun J. Q. Healable, recyclable, and mechanically tough polyurethane elastomers with exceptional damage tolerance. Adv. Mater., 2020, 32(50), e2005759. doi:10.1002/adma.202005759http://dx.doi.org/10.1002/adma.202005759
Nie J.; Wang Z. L.; Li J. F.; Gong Y.; Sun J. X.; Yang S. G. Interface hydrogen-bonded core-shell nanofibers by coaxial electrospinning. Chinese J. Polym. Sci., 2017, 35(8), 1001-1008. doi:10.1007/s10118-017-1984-8http://dx.doi.org/10.1007/s10118-017-1984-8
Zhang H.; Wu Y. Z.; Yang J. X.; Wang D.; Yu P. Y.; Lai C. T.; Shi A. C.; Wang J. P.; Cui S. X.; Xiang J. F.; Zhao N.; Xu J. Superstretchable dynamic polymer networks. Adv. Mater., 2019, 31(44), 1904029. doi:10.1002/adma.201904029http://dx.doi.org/10.1002/adma.201904029
Zheng M.; Long T. J.; Chen X. L.; Sun J. Q. Humidity-responsive bilayer actuators comprised of porous and nonporous poly(acrylic acid)/poly(allylamine hydrochloride) films. Chinese J. Polym. Sci., 2019, 37(1), 52-58. doi:10.1007/s10118-018-2162-3http://dx.doi.org/10.1007/s10118-018-2162-3
Niu W. W.; Zhu Y. L.; Wang R.; Lu Z. Y.; Liu X. K.; Sun J. Q. Remalleable, healable, and highly sustainable supramolecular polymeric materials combining superhigh strength and ultrahigh toughness. ACS Appl. Mater. Interfaces, 2020, 12(27), 30805-30814. doi:10.1021/acsami.0c06995http://dx.doi.org/10.1021/acsami.0c06995
Zhou X. X.; Guo B. C.; Zhang L. Q.; Hu G. H. Progress in bio-inspired sacrificial bonds in artificial polymeric materials. Chem. Soc. Rev., 2017, 46(20), 6301-6329. doi:10.1039/c7cs00276ahttp://dx.doi.org/10.1039/c7cs00276a
李皆富, 杨曙光. 链间氢键调控对聚丙烯酸-聚氧化乙烯复合物薄膜力学性能的影响. 高分子学报, 2019, 50(8), 857-862. doi:10.11777/j.issn1000-3304.2019.19032http://dx.doi.org/10.11777/j.issn1000-3304.2019.19032
Yang J.; Li K.; Tang C.; Liu Z. Z.; Fan J. H.; Qin G.; Cui W.; Zhu L.; Chen Q. Recent progress in double network elastomers: one plus one is greater than two. Adv. Funct. Mater., 2022, 32(19), 2110244. doi:10.1002/adfm.202110244http://dx.doi.org/10.1002/adfm.202110244
Yin Q. Y.; Dai C. H.; Chen H.; Gou K.; Guan H. Z.; Wang P. H.; Jiang J. T.; Weng G. S. Tough double metal-ion cross-linked elastomers with temperature-adaptable self-healing and luminescence properties. Chinese J. Polym. Sci., 2021, 39(5), 554-565. doi:10.1007/s10118-021-2517-zhttp://dx.doi.org/10.1007/s10118-021-2517-z
Sing C. E.; Perry S. L. Recent progress in the science of complex coacervation. Soft Matter, 2020, 16(12), 2885-2914. doi:10.1039/d0sm00001ahttp://dx.doi.org/10.1039/d0sm00001a
Zhu M. M.; Wang W. J.; Zhang C. H.; Zhu L. P.; Yang S. G. Photo-responsive behaviors of hydrogen-bonded polymer complex fibers containing azobenzene functional groups. Adv. Fiber Mater., 2021, 3(3), 172-179. doi:10.1007/s42765-021-00080-0http://dx.doi.org/10.1007/s42765-021-00080-0
Liu Y. Y.; Xu B.; Sun S. T.; Wei J.; Wu L. M.; Yu Y. L. Humidity- and photo-induced mechanical actuation of cross-linked liquid crystal polymers. Adv. Mater., 2017, 29(9), 1604792. doi:10.1002/adma.201604792http://dx.doi.org/10.1002/adma.201604792
刘德中, 李皆富, 黄文弢, 杨曙光. 高分子复合物纤维的研究进展. 高分子学报, 2018, (4), 445-455. doi:10.11777/j.issn1000-3304.2017.17285http://dx.doi.org/10.11777/j.issn1000-3304.2017.17285
Hines L.; Petersen K.; Lum G. Z.; Sitti M. Soft actuators for small-scale robotics. Adv. Mater., 2017, 29(13), 1603483. doi:10.1002/adma.201603483http://dx.doi.org/10.1002/adma.201603483
刘德中, 杨曙光. 多组分高分子复合物纤维的制备与性能调控. 高分子学报, 2021, 52(10): 1353-1360. doi:10.11777/j.issn1000-3304.2021.21060http://dx.doi.org/10.11777/j.issn1000-3304.2021.21060
Lutz J. F.; Lehn J. M.; Meijer E. W.; Matyjaszewski K. From precision polymers to complex materials and systems. Nat. Rev. Mater., 2016, 1, 16024. doi:10.1038/natrevmats.2016.24http://dx.doi.org/10.1038/natrevmats.2016.24
Li J. F.; Wang Z. L.; Wen L. G.; Nie J.; Yang S. G.; Xu J.; Cheng S. Z. D. Highly elastic fibers made from hydrogen-bonded polymer complex. ACS Macro Lett., 2016, 5(7), 814-818. doi:10.1021/acsmacrolett.6b00346http://dx.doi.org/10.1021/acsmacrolett.6b00346
Wang Y.; Liu X. K.; Li S. H.; Li T. Q.; Song Y.; Li Z. D.; Zhang W. K.; Sun J. Q. Transparent, healable elastomers with high mechanical strength and elasticity derived from hydrogen-bonded polymer complexes. ACS Appl. Mater. Interfaces, 2017, 9(34), 29120-29129. doi:10.1021/acsami.7b08636http://dx.doi.org/10.1021/acsami.7b08636
Li J. F.; Sun J. X.; Wu D.; Huang W. T.; Zhu M. F.; Reichmanis E.; Yang S. G. Functionalization-directed stabilization of hydrogen-bonded polymer complex fibers: Elasticity and conductivity. Adv. Fiber Mater., 2019, 1(1), 71-81. doi:10.1007/s42765-019-0001-0http://dx.doi.org/10.1007/s42765-019-0001-0
Caldona E. B.; de Leon A. C. C.; Pajarito B. B.; Advincula R. C. A review on rubber-enhanced polymeric materials. Polym. Rev., 2017, 57(2), 311-338. doi:10.1080/15583724.2016.1247102http://dx.doi.org/10.1080/15583724.2016.1247102
Wang W. J.; Xu X.; Zhang C. H.; Huang H.; Zhu L. P.; Yue K.; Zhu M. F.; Yang S. G. Skeletal muscle fibers inspired polymeric actuator by assembly of triblock polymers. Adv. Sci. (Weinh), 2022, 9(13), e2105764. doi:10.1002/advs.202105764http://dx.doi.org/10.1002/advs.202105764
Xiang F. M.; Ward S. M.; Givens T. M.; Grunlan J. C. Structural tailoring of hydrogen-bonded poly(acrylic acid)/poly(ethylene oxide) multilayer thin films for reduced gas permeability. Soft Matter, 2015, 11(5), 1001-1007. doi:10.1039/c4sm02363chttp://dx.doi.org/10.1039/c4sm02363c
Dong J.; Ozaki Y.; Nakashima K. Infrared, Raman, and near-infrared spectroscopic evidence for the coexistence of various hydrogen-bond forms in poly(acrylic acid). Macromolecules, 1997, 30(4), 1111-1117. doi:10.1021/ma960693xhttp://dx.doi.org/10.1021/ma960693x
Matsen M. W. Equilibrium behavior of asymmetric ABA triblock copolymer melts. J. Chem. Phys., 2000, 113(13), 5539-5544. doi:10.1063/1.1289889http://dx.doi.org/10.1063/1.1289889
Abetz V.; Simon, P. F. W. Phase behaviour and morphologies of block copolymers. In: Block Copolymers I. Berlin/Heidelberg: Springer-Verlag, 2005. 125-212. doi:10.1007/b138192http://dx.doi.org/10.1007/b138192
Kutz M. Applied Plastics Engineering Handbook-Second Edition. Cambridge: William Andrew Publishing, 2017. 91-107. doi:10.1016/b978-0-323-39040-8.00037-7http://dx.doi.org/10.1016/b978-0-323-39040-8.00037-7
Honeker C. C.; Thomas E. L. Impact of morphological orientation in determining mechanical properties in triblock copolymer systems. Chem. Mater., 1996, 8(8), 1702-1714. doi:10.1021/cm960146qhttp://dx.doi.org/10.1021/cm960146q
Zhu Y.; Shen Q. Q.; Wei L. Y.; Fu X.; Huang C.; Zhu Y. Q.; Zhao L. J.; Huang G. S.; Wu J. R. Ultra-tough, strong, and defect-tolerant elastomers with self-healing and intelligent-responsive abilities. ACS Appl. Mater. Interfaces, 2019, 11(32), 29373-29381. doi:10.1021/acsami.9b11041http://dx.doi.org/10.1021/acsami.9b11041
Diani J.; Fayolle B.; Gilormini P. A review on the Mullins effect. Eur. Polym. J., 2009, 45(3), 601-612. doi:10.1016/j.eurpolymj.2008.11.017http://dx.doi.org/10.1016/j.eurpolymj.2008.11.017
Tarasov S. G.; Tsvankin D. Y.; Godovskii Y. K. The structural changes during the deformation of orientated and isotropic butadiene-styrene block copolymers. Polym. Sci. U.S.S.R., 1978, 20(7), 1728-1739. doi:10.1016/0032-3950(78)90428-8http://dx.doi.org/10.1016/0032-3950(78)90428-8
Chen P. Z.; Zhao H. Y.; Xia Z. J.; Zhang Q. L.; Wang D. L.; Meng L. P.; Chen W. Structural evolution of LLDPE-LMW/HMW blend during uniaxial deformation as revealed by in situ synchrotron radiation X-ray scattering. Chinese J. Polym. Sci., 2021, 39(1), 102-112. doi:10.1007/s10118-020-2458-yhttp://dx.doi.org/10.1007/s10118-020-2458-y
Zhang C. H.; Wang W. J.; Zhang P. F.; Yang S. G. Thermodynamic analysis of hydrogen-bonded polymer complexation with isothermal titration calorimetry. Polymer, 2022, 256, 125196. doi:10.1016/j.polymer.2022.125196http://dx.doi.org/10.1016/j.polymer.2022.125196
0
Views
121
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution