浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 中国科学院生态环境高分子材料重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
Chun-wei Zhuo, E-mail: cwzhuo@ciac.ac.cn
Xian-hong Wang, E-mail: xhwang@ciac.ac.cn
Published:20 March 2023,
Published Online:26 October 2022,
Received:17 September 2022,
Accepted:28 September 2022
扫 描 看 全 文
游怀,严硕,宋学霖等.有机催化精准制备聚酯多元醇:环氧化物原位缓释与捕捉策略[J].高分子学报,2023,54(03):327-335.
You Huai,Yan Shuo,Song Xue-lin,et al.Precise Construction of Polyester Polyol from Organocatalysis: Epoxide Slow-release and in situ Capture Strategy[J].ACTA POLYMERICA SINICA,2023,54(03):327-335.
游怀,严硕,宋学霖等.有机催化精准制备聚酯多元醇:环氧化物原位缓释与捕捉策略[J].高分子学报,2023,54(03):327-335. DOI: 10.11777/j.issn1000-3304.2022.22315.
You Huai,Yan Shuo,Song Xue-lin,et al.Precise Construction of Polyester Polyol from Organocatalysis: Epoxide Slow-release and in situ Capture Strategy[J].ACTA POLYMERICA SINICA,2023,54(03):327-335. DOI: 10.11777/j.issn1000-3304.2022.22315.
基于低张力五元环张碳酸酯可控缓释环氧化物以及原位捕捉策略,开创了一种有机鎓盐PPNTFA(双(三苯基正膦基)三氟乙酸铵)催化的苯酐PA与环状碳酸酯(碳酸乙烯酯EC,碳酸丙烯酯PC)调节共聚反应,成功实现了苯酐聚酯多元醇的简便、高效、精准制备.在180 ℃下反应30 min,苯酐的转化率和聚合物产率均可达99%以上. 通过改变链转移剂的种类和用量可以对目标聚合物微结构、拓扑结构和分子量(
M
n
SEC
= 1300~17700 g/mol)等关键参数进行可控调节. 而且,改变环状碳酸酯种类可以按需调整聚酯多元醇的骨架结构.
Herein
based on the epoxide slow-release from cyclic carbonate and
in situ
capture strategy
we developed a novel telomerization reaction of PA/cyclic carbonates (ethylene carbonate
EC; propylene carbonate
PC) catalyzed by organic onium salt PPNTFA (bis(triphenylphosphine)iminium ammonium trifluoroacetate)
enabling the fast
efficient and precise preparation of PA-based polyester polyol. The conversion of PA and the yield of targeted polymer were more than 99% after maintaining for 30 min at 180 ℃. Through changing the types and dosage of chain transfer agent
the key parameters such as microstructure
topology and molecular weight of the targeted polymer (
M
n
SEC
= 1300‒17700 g/mol) can be controllably adjusted. Moreover
the backbone structure of polyester polyol can be customized on demand by applying various cyclic carbonates.
苯酐聚酯多元醇有机催化环状碳酸酯环氧化物缓释与原位捕捉调节共聚反应
PA-based polyester polyolOrganocatalysisCyclic carbonateEpoxide slow-release and in situ captureTelomerization
Delebecq E.; Pascault J. P.; Boutevin B.; Ganachaud F. On the versatility of urethane/urea bonds: Reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem. Rev., 2013, 113(1), 80-118. doi:10.1021/cr300195nhttp://dx.doi.org/10.1021/cr300195n
Chakraborty D.; Rodriguez A.; Chen E. Y. X. Catalytic ring-opening polymerization of propylene oxide by organoborane and aluminum lewis acids. Macromolecules, 2003, 36(15), 5470-5481. doi:10.1021/ma034050ahttp://dx.doi.org/10.1021/ma034050a
李剑锋, 戈欢, 孙兆任, 周玉波, 林长红. 双酚A基高性能聚醚多元醇的合成及应用. 聚氨酯工业, 2022, 37(3), 10-13. doi:10.3969/j.issn.1005-1902.2022.03.003http://dx.doi.org/10.3969/j.issn.1005-1902.2022.03.003
Raghuraman A.; Babb D.; Miller M.; Paradkar M.; Smith B.; Nguyen A. Sequential DMC/FAB-catalyzed alkoxylation toward high primary hydroxyl, high molecular weight polyether polyols. Macromolecules, 2016, 49(18), 6790-6798. doi:10.1021/acs.macromol.6b01363http://dx.doi.org/10.1021/acs.macromol.6b01363
Baheti P.; Gimello O.; Bouilhac C.; Lacroix-Desmazes P.; Howdle S. M. Sustainable synthesis and precise characterisation of bio-based star polycaprolactone synthesised with a metal catalyst and with lipase. Polym. Chem., 2018, 9(47), 5594-5607. doi:10.1039/c8py01266khttp://dx.doi.org/10.1039/c8py01266k
郭汝轩. 苯酐聚酯多元醇合成研究及在聚氨酯胶黏剂中的应用. 精细与专用化学品, 2017, 25(6), 14-16.
Pohl M.; Danieli E.; Leven M.; Leitner W.; Blümich B.; Müller T. E. Dynamics of polyether polyols and polyether carbonate polyols. Macromolecules, 2016, 49(23), 8995-9003. doi:10.1021/acs.macromol.6b01601http://dx.doi.org/10.1021/acs.macromol.6b01601
Darensbourg D. J. Chain transfer agents utilized in epoxide and CO2 copolymerization processes. Green Chem., 2019, 21(9), 2214-2223. doi:10.1039/c9gc00620fhttp://dx.doi.org/10.1039/c9gc00620f
付双滨, 秦玉升, 乔立军, 王献红, 王佛松. 高伯羟基含量聚(碳酸酯-醚)多元醇的制备. 高分子学报, 2019, 50(4), 338-343. doi:10.11777/j.issn1000-3304.2018.18274http://dx.doi.org/10.11777/j.issn1000-3304.2018.18274
曹瀚, 巩如楠, 周振震, 王献红, 王佛松. 功能化二氧化碳基多元醇的精准合成. 高分子学报, 2021, 52(8), 1006-1014. doi:10.11777/j.issn1000-3304.2021.21056http://dx.doi.org/10.11777/j.issn1000-3304.2021.21056
吴丹, 岳昌海, 孙玉玉, 秦凤祥, 朱忆宁. 芳香族聚酯多元醇的合成和生产工艺进展. 天然气化工(C1化学与化工), 2020, 45(3), 128-134.
张敏, 夏青, 王昊, 张宝峰, 李猛. 聚醚型与聚酯型聚氨酯弹性体的性能研究. 塑料工业, 2013, 41(2), 87-89. doi:10.3969/j.issn.1005-5770.2013.02.022http://dx.doi.org/10.3969/j.issn.1005-5770.2013.02.022
曹祺风, 宋文生, 朱长春. 热塑性聚氨酯用苯酐聚酯多元醇的合成及表征. 中国胶粘剂, 2007, 16(6), 12v15. doi:10.3969/j.issn.1004-2849.2007.06.004http://dx.doi.org/10.3969/j.issn.1004-2849.2007.06.004
左晓兵, 朱亚辉, 俞丽珍, 高坡, 王娟. 顺酐聚酯多元醇的合成及应用研究. 现代化工, 2010, 30(11), 64-66.
姚斌, 张晓谦, 米鹏, 舒永, 陈琦, 王立芹, 邢文国, 冯维春, 孟宪兴. 聚酯多元醇的研究进展. 山东化工, 2021, 50(24), 101-102. doi:10.3969/j.issn.1008-021X.2021.24.031http://dx.doi.org/10.3969/j.issn.1008-021X.2021.24.031
关雎, 关燕琼, 彭进平, 李善顺. 合成聚酯多元醇中催化剂性能的比较研究. 广州化工, 2008, 36(3), 36-38. doi:10.3969/j.issn.1001-9677.2008.03.015http://dx.doi.org/10.3969/j.issn.1001-9677.2008.03.015
张猛, 周永红, 潘青良, 曹振华. 蓖麻油基聚酯多元醇的制备及表征. 聚氨酯工业, 2012, 27(5), 15-18. doi:10.3969/j.issn.1005-1902.2012.05.004http://dx.doi.org/10.3969/j.issn.1005-1902.2012.05.004
陈元武. 苯酐聚酯多元醇的合成及其在泡沫结构胶粘剂上的应用. 中国胶粘剂, 2007, 16(4), 44-47. doi:10.3969/j.issn.1004-2849.2007.04.012http://dx.doi.org/10.3969/j.issn.1004-2849.2007.04.012
Yan Q. M.; Lin Z. X.; Lin X.; Fang C. Preparation and characterization of high initial bonding strength reactive hot melt polyurethane adhesive derived from phthalate polyester polyols. J. Adhesion Sci. Technol., 2018, 32(20), 2282-2297. doi:10.1080/01694243.2018.1471841http://dx.doi.org/10.1080/01694243.2018.1471841
Vlase G.; Bolcu C.; Modra D.; Budiul M. M.; Ledeţi I.; Albu P.; Vlase T. Thermal behavior of phthalic anhydride-based polyesters. J. Therm. Anal. Calorim., 2016, 126(1), 287-292. doi:10.1007/s10973-016-5509-4http://dx.doi.org/10.1007/s10973-016-5509-4
任倩茹, 徐垚英, 周祥光. 国内聚酯多元醇研究进展. 合成纤维, 2019, 48(12), 1-4.
于海宁, 杜杰, 彭卫, 沈国平, 沈沉, 刘海蓉. 催化剂对聚氨酯泡沫塑料中三醛含量的影响. 聚氨酯工业, 2020, 35(3), 40-42. doi:10.3969/j.issn.1005-1902.2020.03.011http://dx.doi.org/10.3969/j.issn.1005-1902.2020.03.011
You H.; Wang E. H.; Cao H.; Zhuo C. W.; Liu S. J.; Wang X. H.; Wang F. S. From impossible to possible: Atom-economic polymerization of low strain five-membered carbonates. Angew. Chem. Int. Ed Engl., 2022, 61(5), e202113152. doi:10.1002/anie.202113152http://dx.doi.org/10.1002/anie.202113152
DiCiccio A. M.; Longo J. M.; Rodríguez-Calero G. G.; Coates G. W. Development of highly active and regioselective catalysts for the copolymerization of epoxides with cyclic anhydrides: An unanticipated effect of electronic variation. J. Am. Chem. Soc., 2016, 138(22), 7107-7113. doi:10.1021/jacs.6b03113http://dx.doi.org/10.1021/jacs.6b03113
Boiko V. P.; Grischenko V. K. Determination of hydroxyl groups in polymers. Acta Polym., 1985, 36(9), 459-472. doi:10.1002/actp.1985.010360901http://dx.doi.org/10.1002/actp.1985.010360901
Fu S. B.; Qin Y. S.; Qiao L. J.; Wang X. H.; Wang F. S. Propylene oxide end-capping route to primary hydroxyl group dominated CO2-polyol. Polymer, 2018, 153, 167-172. doi:10.1016/j.polymer.2018.08.014http://dx.doi.org/10.1016/j.polymer.2018.08.014
0
Views
85
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution