浏览全部资源
扫码关注微信
1.中国人民大学化学系 北京 100872
2.中国科学院化学研究所 北京 100190
3.中国科学院大学 北京 100049
Zhi-yong Yu, E-mail: Yuzhiyong@ruc.edu.cn
Li-jin Xu, E-mail: 20050062@ruc.edu.cn
Yuan-chen Dong, E-mail: dongyc@iccas.ac.cn
Published:20 March 2023,
Published Online:16 November 2022,
Received:23 September 2022,
Accepted:21 October 2022
扫 描 看 全 文
成佳峰,袁伟,丁雨樵等.尺寸可控的球型DNA纳米颗粒构筑策略及其应用[J].高分子学报,2023,54(03):336-345.
Cheng Jia-feng,Yuan Wei,Ding Yu-qiao,et al.Construction and Application of Size-controllable Spherical DNA Nanoparticles[J].ACTA POLYMERICA SINICA,2023,54(03):336-345.
成佳峰,袁伟,丁雨樵等.尺寸可控的球型DNA纳米颗粒构筑策略及其应用[J].高分子学报,2023,54(03):336-345. DOI: 10.11777/j.issn1000-3304.2022.22323.
Cheng Jia-feng,Yuan Wei,Ding Yu-qiao,et al.Construction and Application of Size-controllable Spherical DNA Nanoparticles[J].ACTA POLYMERICA SINICA,2023,54(03):336-345. DOI: 10.11777/j.issn1000-3304.2022.22323.
为探究球型DNA纳米颗粒的尺寸对细胞摄取的影响,提出了一种新型构筑策略,制备了一系列尺寸精准可控的球型DNA纳米颗粒,并进一步揭示了球型DNA纳米颗粒的尺寸与MCF-7细胞内化效率的关系;此外,该策略还可以与框架诱导策略相结合,构筑尺寸可控的磷脂囊泡. 该结果为构建新型高效的DNA纳米颗粒载药系统提供了理论参考,为特定尺寸的药物载体设计和开发拓展了思路.
During last decades
spherical DNA nanoparticles have been demonstrated as a powerful tool for delivering nucleic acids
small molecular drugs and protein
etc
. While the importance of the sizes of such nanoparticles has been recognized in cell uptake efficiency
the investigation in detailed mechanism is still limited owing to the lack of tools to prepare size controllable nanoparticles. Herein
we have developed a strategy to construct spherical DNA nanoparticles (AuNP-G
x
) with precise and controllable sizes
through the assembly of DNA modified gold nanoparticles and rigid DNA dendrimers (Y
1
and Y
2
) in a layer-by-layer manner. The rigid DNA dendrimers were firstly assembled through three different single strands DNA . Each dendrimer structure (Y
1
and Y
2
) was designed with the sticky-end segments which can further hybridize with the other Y. Therefore
through stepwise incubation with the gold particle core
different particles could be easily prepared through such only two components. The dynamic light scattering (DLS)
agarose gel electrophoresis and transmission electron microscopy (TEM) showed that DNA dendrimers have been assembled around gold nanoparticles layer-by-layer
which indicated the successful preparation of AuNP-G
x
with precise and controllable sizes. The prepared AuNP-G
x
nucleic acid nanoparticles were successfully used to reveal the size effect of nucleic acid nanoparticle on the uptake efficiency of MCF-7 cells. From the experimental results
it could be observed that AuNP-G
1
and AuNP-G
0
performed the highest internalization efficiency for MCF-7 cells
while the internalization efficiency of the nanoparticles decreased gradually with the increase of the size. A size-controllable phospholipid vesicle with drug encapsulation and delivery potential was also constructed by using AuNP-G
x
of different sizes as the frames and using the Frame-Guided Assembly strategy. Besides
the phospholipid vesicles were easily ingested by MCF-7 cells and showed good biocompatibility. This strategy provides a new tool for the design and development of drug carriers with specific dimensions
and a new theoretical support for the construction of novel and efficient DNA nanoparticle drug-loading systems.
尺寸可控球型DNA纳米颗粒DNA自组装框架诱导组装
Controllable sizeSpherical DNA nanoparticlesDNA self-assemblyFrame-guided assembly
Kapadia C. H.; Melamed J. R.; Day E. S. Spherical nucleic acid nanoparticles: therapeutic potential. Biodrugs, 2018, 32, 297-309. doi:10.1007/s40259-018-0290-5http://dx.doi.org/10.1007/s40259-018-0290-5
Mirkin C. A.; Letsinger R. L.; Mucic R. C.; Storhoff J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382, 607-609. doi:10.1038/382607a0http://dx.doi.org/10.1038/382607a0
Li Z.; Jin R.; Mirkin C. A.; Letsinger R. L. Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. Nucleic Acids Res., 2002, 30, 1558-1562. doi:10.1093/nar/30.7.1558http://dx.doi.org/10.1093/nar/30.7.1558
Cutler J. I.; Zheng D.; Xu X.; Giljohann D. A.; Mirkin C. A. Polyvalent oligonucleotide iron oxide nanoparticle "click" conjugates. Nano Lett., 2010, 10, 1477-1480. doi:10.1021/nl100477mhttp://dx.doi.org/10.1021/nl100477m
Banga R. J.; Meckes B.; Narayan S. P.; Sprangers A. J.; Nguyen S. T.; Mirkin C. A. Cross-linked micellar spherical nucleic acids from thermoresponsive templates. J. Am. Chem. Soc., 2017, 139, 4278-4281. doi:10.1021/jacs.6b13359http://dx.doi.org/10.1021/jacs.6b13359
Brodin J. D.; Sprangers A. J.; McMillan J. R.; Mirkin C. A. DNA-mediated cellular delivery of functional enzymes. J. Am. Chem. Soc., 2015, 137, 14838-14841. doi:10.1021/jacs.5b09711http://dx.doi.org/10.1021/jacs.5b09711
Cutler J. I.; Auyeung E.; Mirkin C. A. Spherical nucleic acids. J. Am. Chem. Soc., 2012, 134, 1376-1391. doi:10.1021/ja209351uhttp://dx.doi.org/10.1021/ja209351u
Zwanikken J. W.; Guo P.; Mirkin C. A.; Olvera de la Cruz, M. Local ionic environment around polyvalent nucleic acid-functionalized nanoparticles, J. Phys. Chem. C, 2011, 115, 16368-16373. doi:10.1021/jp205583jhttp://dx.doi.org/10.1021/jp205583j
Sabatine M. S.; Morrow D. A.; de Lemos J. A.; Omland T.; Sloan S.; Jarolim P.; Solomon S. D.; Pfeffer M. A.; Braunwald E. Evaluation of multiple biomarkers of cardiovascular stress for risk prediction and guiding medical therapy in patients with stable coronary disease. Circulation, 2012, 125, 233-240. doi:10.1161/circulationaha.111.063842http://dx.doi.org/10.1161/circulationaha.111.063842
Verma A.; Simard J. M.; Worrall J. W.; Rotello V. M. Tunable reactivation of nanoparticle-inhibited β-galactosidase by glutathione at intracellular concentrations. J. Am. Chem. Soc., 2004, 126, 13987-13991. doi:10.1021/ja046572rhttp://dx.doi.org/10.1021/ja046572r
Nykypanchuk D.; Maye M. M.; van der Lelie D.; Gang O. DNA-guided crystallization of colloidal nanoparticles. Nature, 2008, 451, 549-552. doi:10.1038/nature06560http://dx.doi.org/10.1038/nature06560
Ji, M.; Ma, N.; Tian, Y. 3D lattice engineering of nanoparticles by DNA shells. Small, 2019, 15, e1805401. doi:10.1002/smll.201805401http://dx.doi.org/10.1002/smll.201805401
Tian Y.; Lhermitte J. R.; Bai L.; Vo T.; Xin H. L.; Li H.; Li R.; Fukuto M.; Yager K. G.; Kahn J. S.; Xiong Y.; Minevich B.; Kumar S. K.; Gang O. Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels. Nat. Mater., 2020, 19, 789-796. doi:10.1038/s41563-019-0550-xhttp://dx.doi.org/10.1038/s41563-019-0550-x
Rosi N. L.; Giljohann D. A.; Thaxton C. S.; Lytton-Jean A. K.; Han M. S.; Mirkin C. A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science, 2006, 312, 1027-1030. doi:10.1126/science.1125559http://dx.doi.org/10.1126/science.1125559
Zhang Y. N.; Hou X.; Piao J.; Yuan W.; Zhou B. N.; Zhao X.; Hao Z.; Zhuang Y.; Xu L.; Dong Y.; Liu D. Delivery and controllable release of anti-sense DNA based on frame-guided assembly strategy. Eur. Polym. J., 2022, 173, 111187. doi:10.1016/j.eurpolymj.2022.111187http://dx.doi.org/10.1016/j.eurpolymj.2022.111187
Zhang K.; Li Y.; Liu J.; Yang X.; Xu Y.; Shi J.; Liu W.; Li J. Y-shaped circular aptamer-DNAzyme conjugates for highly efficient in vivo gene silencing. CCS Chem., 2020, 2, 631-641. doi:10.31635/ccschem.020.202000170http://dx.doi.org/10.31635/ccschem.020.202000170
Tan X.; Li B. B.; Lu X.; Jia F.; Santori C.; Menon P.; Li. H.; Zhang B.; Zhao J. J.; Zhang K. Light-triggered, self-immolative nucleic acid-drug nanostructures. J. Am. Chem. Soc., 2015, 137, 6112-6115. doi:10.1021/jacs.5b00795http://dx.doi.org/10.1021/jacs.5b00795
Dhar S.; Daniel, W, L.; Giljohann, D. A.; Mirkin, C. A.; Lippard, S. J. Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum (IV) warheads. J. Am. Chem. Soc., 2009, 131, 14652-14653. doi:10.1021/ja9071282http://dx.doi.org/10.1021/ja9071282
Qi H.; Xu Y.; Hu P.; Yao C.; Yang D.; Construction and applications of DNA-based nanomaterials in cancer therapy. Chin. Chem. Lett., 2022, 33, 1131-1140. doi:10.1016/j.cclet.2021.09.026http://dx.doi.org/10.1016/j.cclet.2021.09.026
Jiang W.; Kim B. Y.; Rutka J. T.; Chan W. C. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol., 2008, 3, 145-150. doi:10.1038/nnano.2008.30http://dx.doi.org/10.1038/nnano.2008.30
Mishra S.; Webster P.; Davis M. E. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur. J. Cell Biol., 2004, 83, 97-111. doi:10.1078/0171-9335-00363http://dx.doi.org/10.1078/0171-9335-00363
Popielarski S. R.; Hu-Lieskovan S.; French S. W.; Triche T. J.; Davis M. E. A nanoparticle-based model delivery system to guide the rational design of gene delivery to the liver. 2. in vitro and in vivo uptake results. Bioconjugate. Chem., 2005, 16, 1071-1080. doi:10.1021/bc0501146http://dx.doi.org/10.1021/bc0501146
Zhuang J.; Wang D.; Li D.; Yang Y.; Lu Y.; Wu W.; Wu W.; Qi J. The influence of nanoparticle shape on bilateral exocytosis from Caco-2 cells. Chin. Chem. Lett., 2018, 29, 1815-1818. doi:10.1016/j.cclet.2018.10.012http://dx.doi.org/10.1016/j.cclet.2018.10.012
Gao H.; Shi W.; Freund L. B.; Mechanics of receptor-mediated endocytosis. Proc. Natl. Acad. Sci. USA, 2005, 102(27), 9469-9474. doi:10.1073/pnas.0503879102http://dx.doi.org/10.1073/pnas.0503879102
Yonezawa T.; Sutoh M.; Kunitake T.; Practical preparation of size-controlled gold nanoparticles in water. Chem. Lett., 1997, 26, 619-620. doi:10.1246/cl.1997.619http://dx.doi.org/10.1246/cl.1997.619
Dong Y.; Sun Y.; Wang L.; Wang D.; Zhou T.; Yang Z.; Chen Z.; Wang Q.; Fan Q.; Liu D. Frame-guided assembly of vesicles with programmed geometry and dimensions. Angew. Chem. Int. Ed., 2014, 53, 2607-2610. doi:10.1002/anie.201310715http://dx.doi.org/10.1002/anie.201310715
Hill H. D.; Millstone J. E.; Banholzer M. J.; Mirkin C. The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACS Nano., 2009, 3, 418-424. doi:10.1021/nn800726ehttp://dx.doi.org/10.1021/nn800726e
Li Y.; Tseng Y. D.; Kwon S. Y.; D'Espaux L.; Bunch J. S.; McEuen P. L.; Luo D. Controlled assembly of dendrimer-like DNA. Nat. Mater., 2004, 3, 38-42. doi:10.1038/nmat1045http://dx.doi.org/10.1038/nmat1045
Nilsen T. W.; Grayzel J.; Prensky W.; J, Dendritic nucleic acid structures. Theor. Biol., 1997, 187, 273-284. doi:10.1006/jtbi.1997.0446http://dx.doi.org/10.1006/jtbi.1997.0446
He H.; Dai J.; Duan Z.; Meng Y.; Zhou C.; Long Y.; Zheng B.; Du J.; Guo Y.; Xiao D. Target-catalyzed autonomous assembly of dendrimer-like DNA nanostructures for enzyme-free and signal amplified colorimetric nucleic acids detection. Biosens. Bioelectron., 2016, 86, 985-989. doi:10.1016/j.bios.2016.07.045http://dx.doi.org/10.1016/j.bios.2016.07.045
Zhou T.; Wang Y.; Dong Y.; Chen C.; Liu D.; Yang Z.; Tetrahedron DNA dendrimers and their encapsulation of gold nanoparticles. Bioorg. Med. Chem., 2014, 22, 4391-4394. doi:10.1016/j.bmc.2014.05.062http://dx.doi.org/10.1016/j.bmc.2014.05.062
Xuan F.; Hsing I. M. Triggering hairpin-free chain-branching growth of fluorescent DNA dendrimers for nonlinear hybridization chain reaction. J. Am. Chem. Soc., 2014, 136, 9810-9813. doi:10.1021/ja502904shttp://dx.doi.org/10.1021/ja502904s
Zhou T.; Chen P.; Niu L.; Jin J.; Liang D.; Li, Z,.; Yang, Z.; Liu. D.; pH-responsive size-tunable self-assembled DNA dendrimers. Angew. Chem. Int. Ed., 2012, 51, 11271-11274. doi:10.1002/anie.201205862http://dx.doi.org/10.1002/anie.201205862
Wang C.; Piao J.; Li Y.; Tian X.; Dong Y.; Liu D. Construction of liposomes mimicking cell membrane structure through frame-guided assembly strategy. Angew. Chem. Int. Ed., 2020, 59, 15176-15180. doi:10.1002/anie.202005334http://dx.doi.org/10.1002/anie.202005334
Dong Y.; Yang Y.; Lin C.; Liu D. Frame-guided assembly of amphiphiles. Acc. Chem. Res., 2022, 55, 1938-1948. doi:10.1021/acs.accounts.2c00234http://dx.doi.org/10.1021/acs.accounts.2c00234
袁伟, 董原辰. 框架诱导组装策略研究进展. 高分子学报, 2022, 53, 1204-1216. doi:10.11777/j.issn1000-3304.2022.22154http://dx.doi.org/10.11777/j.issn1000-3304.2022.22154
0
Views
92
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution