浏览全部资源
扫码关注微信
武汉大学化学与分子科学学院 生物医用高分子材料教育部重点实验室 武汉 430072
Published:20 May 2023,
Published Online:13 December 2022,
Received:08 October 2022,
Accepted:21 November 2022
扫 描 看 全 文
陈欢欢,张先正.基于工程化细菌的活性生物材料研究及其医学应用[J].高分子学报,2023,54(05):550-563.
Chen Huan-huan,Zhang Xian-zheng.Engineered Bacteria-based Living Biomaterials for Biomedical Applications[J].ACTA POLYMERICA SINICA,2023,54(05):550-563.
陈欢欢,张先正.基于工程化细菌的活性生物材料研究及其医学应用[J].高分子学报,2023,54(05):550-563. DOI: 10.11777/j.issn1000-3304.2022.22334.
Chen Huan-huan,Zhang Xian-zheng.Engineered Bacteria-based Living Biomaterials for Biomedical Applications[J].ACTA POLYMERICA SINICA,2023,54(05):550-563. DOI: 10.11777/j.issn1000-3304.2022.22334.
细菌由于具有高度生物相容性、运动性和可自主感应生理信号,基于细菌的疗法和递送系统已经被广泛应用于医学领域,包括生物成像、疾病治疗以及组织修复与再生等. 本文从工程化细菌的构建、生物医学应用以及临床转化三方面总结和评述了生物医用工程化细菌领域的研究进展. 重点介绍了通过化学工程化策略对细菌进行改造,在维持细菌自主性和动态功能的同时赋予其新的功能,提高疾病诊断效率,改善治疗效果. 此外,还探讨了工程化的细菌在医学领域上的最新进展和应用前景,最后对工程化细菌未来在医学应用上的挑战进行了简要的展望.
Living bacteria have the characteristics of biocompatibility
motility and can autonomously sense physiological signals
which can be used as therapeutic agents or drug carriers for the treatment of a variety of intractable diseases
including bioimaging
disease treatment
and tissue repair and regeneration. However
bacteria still have shortcomings for medical applications. For examples
some bacteria are often fragile to unfriendly environmental stimulation
leading to unnecessary bacterial death and reduced treatment effectiveness. Recently
various physicochemical and bioengineered modification strategies have been developed for individual bacteria to improve the bioavailability and efficacy
as well as achieve targeted delivery of conventional drugs. In this review
we highlight recent advance in engineered bacteria-based living biomaterials for biomedical applications in terms of engineered bacteria
biomedical application
and clinical transformation. According to the charge state
chemical groups
proteins and antigens of the bacterial surface
we systematically introduce the engineered bacteria modified with physicochemical and bioengineered strategies
especially for single bacteria. In addition
we highlight engineered bacteria-based living biomaterials for emerging diagnosis and advanced therapy
including imaging
biosensor
disease treatment
and tissue repair and regeneration
etc. Furtherly
in the clinical translation
we summarize the new progress of engineered bacteria in the treatment of tumor and gastrointestinal diseases
as well as the great success of engineered bacteria in various clinical trials. Finally
the opportunities and challenges in the future medical application of engineered bacteria have been briefly prospected. This review offers the progress in the application of engineered bacteria based on living biomaterials in biomedical application
which has potential for the development of bacterial therapy in the future.
活性生物材料工程化细菌化学修饰基因编辑医学应用
Living biomaterialBiomedical applicationEngineered bacteriaChemical modificationGene editing
Zhou S. Bacteria synchronized for drug delivery. Nature, 2016, 536(7614), 33-34. doi:10.1038/nature18915http://dx.doi.org/10.1038/nature18915
Chen W. H.; Chen Q. W.; Chen Q.; Cui C.; Duan S.; Kang Y.; Liu Y.; Liu Y.; Muhammad W.; Shao S.; Tang C.; Wang J.; Wang L.; Xiong M. H.; Yin L.; Zhang K.; Zhang Z.; Zhen X.; Feng J.; Gao C.; Gu Z.; He C.; Ji J.; Jiang X.; Liu W.; Liu Z.; Peng H.; Shen Y.; Shi L.; Sun X.; Wang H.; Wang J.; Xiao H.; Xu F. J.; Zhong Z.; Zhang X. Z.; Chen X. Biomedical polymers: synthesis, properties, and applications. Sci. China Chem., 2022, 65, 1010-1075. doi:10.1007/s11426-022-1243-5http://dx.doi.org/10.1007/s11426-022-1243-5
Low K. B.; Ittensohn M.; Luo X.; Zheng L. M.; King I.; Pawelek J. M.; Bermudes D. Construction of vnp20009: A novel, genetically stable antibiotic-sensitive strain of tumor-targeting salmonella for parenteral administration in humans. Methods Mol. Med., 2004, 90, 47-60. doi:10.1007/BF02351577http://dx.doi.org/10.1007/BF02351577
Zhou S. B.; Gravekamp C.; Bermudes D.; Liu K. Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer, 2018, 18(12), 727-743. doi:10.1038/s41568-018-0070-zhttp://dx.doi.org/10.1038/s41568-018-0070-z
Wells J. M.; Mercenier A. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat. Rev. Microbiol., 2008, 6(5), 349-362. doi:10.1038/nrmicro1840http://dx.doi.org/10.1038/nrmicro1840
Lin S. S.; Mukherjee S.; Li J. J.; Hou W. L.; Pan C.; Liu J. Y. Mucosal immunity-mediated modulation of the gut microbiome by oral delivery of probiotics into Peyer's patches. Sci. Adv., 2021, 7(20), eabf0677. doi:10.1126/sciadv.abf0677http://dx.doi.org/10.1126/sciadv.abf0677
Piewngam P.; Zheng Y.; Nguyen T. H.; Dickey S. W.; Joo H. S.; Villaruz A. E.; Glose K. A.; Fisher E. L.; Hunt R. L.; Li B.; Chiou J.; Pharkjaksu S.; Khongthong S.; Cheung G. Y. C.; Kiratisin P.; Otto M. Pathogen elimination by probiotic bacillus via signalling interference. Nature, 2018, 562(7728), 532-537. doi:10.1038/s41586-018-0616-yhttp://dx.doi.org/10.1038/s41586-018-0616-y
Lufton M.; Bustan O.; Eylon B.; Shtifman-Segal E.; Croitoru-Sadger T.; Shagan A.; Shabtay-Orbach A.; Corem-Salkmon E.; Berman J.; Nyska A.; Mizrahi B. Living bacteria in thermoresponsive gel for treating fungal infections. Adv. Funct. Mater., 2018, 28(40), 1801581. doi:10.1002/adfm.201801581http://dx.doi.org/10.1002/adfm.201801581
Hosseinidoust Z.; Mostaghaci B.; Yasa O.; Park B. W.; Singh A. V.; Sitti M. Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv. Drug Deliv. Rev., 2016, 106, 27-44. doi:10.1016/j.addr.2016.09.007http://dx.doi.org/10.1016/j.addr.2016.09.007
Kim S. M.; DeFazio J. R.; Hyoju S. K.; Sangani K.; Keskey R.; Krezalek M. A.; Khodarev N. N.; Sangwan N.; Christley S.; Harris K. G.; Malik A.; Zaborin A.; Bouziat R.; Ranoa D. R.; Wiegerinck M.; Ernest J. D.; Shakhsheer B. A.; Fleming I. D.; Weichselbaum R. R.; Antonopoulos D. A.; Gilbert J. A.; Barreiro L. B.; Zaborina O.; Jabri B.; Alverdy J. C. Fecal microbiota transplant rescues mice from human pathogen mediated sepsis by restoring systemic immunity. Nat. Commun., 2020, 11(1), 2354. doi:10.1038/s41467-020-15545-whttp://dx.doi.org/10.1038/s41467-020-15545-w
Ding W. K.; Shah N. P., Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria. J. Food Sci., 2007, 72(9), 446-450. doi:10.1111/j.1750-3841.2007.00565.xhttp://dx.doi.org/10.1111/j.1750-3841.2007.00565.x
Anselmo A. C.; McHugh K. J.; Webster J.; Langer R.; Jaklenec A. Layer-by-layer encapsulation of probiotics for delivery to the microbiome. Adv. Mater., 2016, 28(43), 9486-9490. doi:10.1002/adma.201603270http://dx.doi.org/10.1002/adma.201603270
Beyer H. M.; Engesser R.; Horner M.; Koschmieder J.; Beyer P.; Timmer J.; Zurbriggen M. D.; Weber W. Synthetic biology makes polymer materials count. Adv. Mater., 2018, 30(21), e1800472. doi:10.1002/adma.201800472http://dx.doi.org/10.1002/adma.201800472
Song W.; Anselmo A. C.; Huang L. Nanotechnology intervention of the microbiome for cancer therapy. Nat. Nanotechnol., 2019, 14(12), 1093-1103. doi:10.1038/s41565-019-0589-5http://dx.doi.org/10.1038/s41565-019-0589-5
Xie M.; Fussenegger M. Designing cell function: Assembly of synthetic gene circuits for cell biology applications. Nat. Rev. Mol. Cell Biol., 2018, 19(8), 507-525. doi:10.1038/s41580-018-0024-zhttp://dx.doi.org/10.1038/s41580-018-0024-z
冯茜, 张琨雨, 李睿, 边黎明. 可注射水凝胶及其在再生医学领域的应用. 高分子学报, 2021, 52(1), 1-15. doi:10.11777/j.issn1000-3304.2020.20126http://dx.doi.org/10.11777/j.issn1000-3304.2020.20126
Asgari S.; Pourjavadi A.; Licht T. R.; Boisen A.; Ajalloueian F. Polymeric carriers for enhanced delivery of probiotics. Adv. Drug Deliv. Rev., 2020, 161-162, 1-21.
Li Z. T.; Wang Y. X.; Liu J.; Rawding P.; Bu J.; Hong S.; Hu Q. Y. Chemically and biologically engineered bacteria-based delivery systems for emerging diagnosis and advanced therapy. Adv. Mater., 2021, 33(38), e2102580. doi:10.1002/adma.202102580http://dx.doi.org/10.1002/adma.202102580
Li Z. M.; Ma J. Y.; Ruan J.; Zhuang X. Using positively charged magnetic nanoparticles to capture bacteria at ultralow concentration. Nanoscale Res. Lett., 2019, 14(1), 195. doi:10.1186/s11671-019-3005-zhttp://dx.doi.org/10.1186/s11671-019-3005-z
Wang W. G.; Xu H. H.; Ye Q. S.; Tao F.; Wheeldon I.; Yuan A. H.; Hu Y. Q.; Wu J. H. Systemic immune responses to irradiated tumours via the transport of antigens to the tumour periphery by injected flagellate bacteria. Nat. Biomed. Eng., 2022, 6(1), 44-53. doi:10.1038/s41551-021-00834-6http://dx.doi.org/10.1038/s41551-021-00834-6
Zhao J. Y.; Huang H. B.; Zhao J. Y.; Xiong X.; Zheng S. B.; Wei X. Q.; Zhou S. B. A hybrid bacterium with tumor-associated macrophage polarization for enhanced photothermal-immunotherapy. Acta Pharm. Sin. B, 2022, 12(6), 2683-2694. doi:10.1016/j.apsb.2021.10.019http://dx.doi.org/10.1016/j.apsb.2021.10.019
Wei B. C.; Pan J. M.; Yuan R. T.; Shao B. F.; Wang Y.; Guo X.; Zhou S. Polarization of tumor-associated macrophages by nanoparticle-loaded Escherichia coli combined with immunogenic cell death for cancer immunotherapy. Nano Lett., 2021, 21(10), 4231-4240. doi:10.1021/acs.nanolett.1c00209http://dx.doi.org/10.1021/acs.nanolett.1c00209
Cao Z. P.; Wang X. Y.; Pang Y.; Cheng S. S.; Liu J. Y. Biointerfacial self-assembly generates lipid membrane coated bacteria for enhanced oral delivery and treatment. Nat. Commun., 2019, 10(1), 5783. doi:10.1038/s41467-019-13727-9http://dx.doi.org/10.1038/s41467-019-13727-9
Taherkhani S.; Mohammadi M.; Daoud J.; Martel S.; Tabrizian M. Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled therapeutic agents. ACS Nano, 2014, 8(5), 5049-5060. doi:10.1021/nn5011304http://dx.doi.org/10.1021/nn5011304
Felfoul O.; Mohammadi M.; Taherkhani S.; de Lanauze D.; Xu Y. Z.; Loghin D.; Essa S.; Jancik S.; Houle D.; Lafleur M.; Gaboury L.; Tabrizian M.; Kaou N.; Atkin M.; Vuong T.; Batist G.; Beauchemin N.; Radzioch D.; Martel S. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol., 2016, 11(11), 941-947. doi:10.1038/nnano.2016.137http://dx.doi.org/10.1038/nnano.2016.137
Chen F. M.; Zang Z. S.; Chen Z.; Cui L.; Chang Z. G.; Ma A. Q.; Yin T.; Liang R. J.; Han Y. T.; Wu Z. H.; Zheng M. B.; Liu C. L.; Cai L. T. Nanophotosensitizer-engineered salmonella bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy. Biomaterials, 2019, 214, 119226. doi:10.1016/j.biomaterials.2019.119226http://dx.doi.org/10.1016/j.biomaterials.2019.119226
Chen Q. W.; Liu X. H.; Fan J. X.; Peng S. Y.; Wang J. W.; Wang X. N.; Zhang C.; Liu C. J.; Zhang X. Z. Self-mineralized photothermal bacteria hybridizing with mitochondria‐targeted metal-organic frameworks for augmenting photothermal tumor therapy. Adv. Funct. Mater., 2020, 30(14), 1909806. doi:10.1002/adfm.201909806http://dx.doi.org/10.1002/adfm.201909806
Park J. H.; Yang S. H.; Lee J.; Ko E. H.; Hong D.; Choi I. S. Nanocoating of single cells: From maintenance of cell viability to manipulation of cellular activities. Adv. Mater., 2014, 26(13), 2001-2010. doi:10.1002/adma.201304568http://dx.doi.org/10.1002/adma.201304568
Wu F.; Liu J. Y. Decorated bacteria and the application in drug delivery. Adv. Drug Deliv. Rev., 2022, 188, 114443. doi:10.1016/j.addr.2022.114443http://dx.doi.org/10.1016/j.addr.2022.114443
Fan J. X.; Li Z. H.; Liu X. H.; Zheng D. W.; Chen Y.; Zhang X. Z. Bacteria-mediated tumor therapy utilizing photothermally-controlled TNF-α expression via oral administration. Nano Lett., 2018, 18(4), 2373-2380. doi:10.1021/acs.nanolett.7b05323http://dx.doi.org/10.1021/acs.nanolett.7b05323
Wang J. W.; Chen Q. W.; Luo G. F.; Han Z. Y.; Song W. F.; Yang J.; Chen W. H.; Zhang X. Z. A self-driven bioreactor based on bacterium-metal-organic framework biohybrids for boosting chemotherapy via cyclic lactate catabolism. ACS Nano, 2021, 15(11), 17870-17884. doi:10.1021/acsnano.1c06123http://dx.doi.org/10.1021/acsnano.1c06123
Teramura Y.; Kaneda Y.; Totani T.; Iwata H. Behavior of synthetic polymers immobilized on a cell membrane. Biomaterials, 2008, 29(10), 1345-1355. doi:10.1016/j.biomaterials.2007.11.048http://dx.doi.org/10.1016/j.biomaterials.2007.11.048
Takeo M.; Li C. C.; Matsuda M.; Nagai H.; Hatanaka W.; Yamamoto T.; Kishimura A.; Mori T.; Katayama Y. Optimum design of amphiphilic polymers bearing hydrophobic groups for both cell surface ligand presentation and intercellular cross-linking. J. Biomater. Sci. Polym. Ed., 2015, 26(6), 353-368. doi:10.1080/09205063.2015.1007414http://dx.doi.org/10.1080/09205063.2015.1007414
Jia H. R.; Zhu Y. X.; Chen Z.; Wu F. G. Cholesterol-assisted bacterial cell surface engineering for photodynamic inactivation of gram-positive and gram-negative bacteria. ACS Appl. Mater. Interfaces, 2017, 9(19), 15943-15951. doi:10.1021/acsami.7b02562http://dx.doi.org/10.1021/acsami.7b02562
Wang H. Y.; Hua X. W.; Jia H. R.; Li C.; Lin F.; Chen Z.; Wu F. G. Universal cell surface imaging for mammalian, fungal, and bacterial cells. ACS Biomater. Sci. Eng., 2016, 2(6), 987-997. doi:10.1021/acsbiomaterials.6b00130http://dx.doi.org/10.1021/acsbiomaterials.6b00130
Setten R. L.; Rossi J. J.; Han S. P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug. Discov., 2019, 18(6), 421-446. doi:10.1038/s41573-019-0017-4http://dx.doi.org/10.1038/s41573-019-0017-4
Praveschotinunt P.; Duraj-Thatte A. M.; Gelfat I.; Bahl F.; Chou D. B.; Joshi N. S. Engineered E. coli Nissle 1917 for the delivery of matrix-tethered therapeutic domains to the gut. Nat. Commun., 2019, 10(1), 5580.
Harimoto T.; Hahn J.; Chen Y. Y.; Im J.; Zhang J.; Hou N.; Li F.; Coker C.; Gray K.; Harr N.; Chowdhury S.; Pu K.; Nimura C.; Arpaia N.; Leong K. W.; Danino T. A programmable encapsulation system improves delivery of therapeutic bacteria in mice. Nat. Biotechnol., 2022, 40(8), 1259-1269. doi:10.1038/s41587-022-01244-yhttp://dx.doi.org/10.1038/s41587-022-01244-y
Pan P.; Dong X.; Chen Y.; Zeng X.; Zhang X. Z. Engineered bacteria for enhanced radiotherapy against breast carcinoma. ACS Nano, 2022, 16(1), 801-812. doi:10.1021/acsnano.1c08350http://dx.doi.org/10.1021/acsnano.1c08350
Zhang Y.; Liu M. D.; Li C. X.; Li B.; Zhang X. Z. Tumor cell membrane-coated liquid metal nanovaccine for tumor prevention. Chin. J. Chem., 2020, 38, 595-600. doi:10.1002/cjoc.201900557http://dx.doi.org/10.1002/cjoc.201900557
Cao Z. P.; Cheng S. S.; Wang X. Y.; Pang Y.; Liu J. Y. Camouflaging bacteria by wrapping with cell membranes. Nat. Commun., 2019, 10(1), 3452. doi:10.1038/s41467-019-11390-8http://dx.doi.org/10.1038/s41467-019-11390-8
Alapan Y.; Yasa O.; Schauer O.; Giltinan J.; Tabak A. F.; Sourjik V.; Sitti M. Soft erythrocyte-based bacterial microswimmers for cargo delivery. Sci. Robot., 2018, 3(17), eaar4423. doi:10.1126/scirobotics.aar4423http://dx.doi.org/10.1126/scirobotics.aar4423
Wang X. Y.; Cao Z. P.; Zhang M. M.; Meng L.; Ming Z. Z.; Liu J. Y. Bioinspired oral delivery of gut microbiota by self-coating with biofilms. Sci. Adv., 2020, 6(26), eabb1952. doi:10.1126/sciadv.abb1952http://dx.doi.org/10.1126/sciadv.abb1952
Schwechheimer C.; Kuehn M. J. Outer-membrane vesicles from gram-negative bacteria: Biogenesis and functions. Nat. Rev. Microbiol., 2015, 13(10), 605-619. doi:10.1038/nrmicro3525http://dx.doi.org/10.1038/nrmicro3525
Kulp A.; Kuehn M. J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol., 2010, 64, 163-184. doi:10.1146/annurev.micro.091208.073413http://dx.doi.org/10.1146/annurev.micro.091208.073413
Toyofuku M.; Nomura N.; Eberl L. Types and origins of bacterial membrane vesicles. Nat. Rev. Microbiol., 2019, 17(1), 13-24. doi:10.1038/s41579-018-0112-2http://dx.doi.org/10.1038/s41579-018-0112-2
Kim O. Y.; Park H. T.; Dinh N. T. H.; Choi S. J.; Lee J.; Kim J. H.; Lee S. W.; Gho Y. S. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nat. Commun., 2017, 8(1), 626. doi:10.1038/s41467-017-00729-8http://dx.doi.org/10.1038/s41467-017-00729-8
Pan J. M.; Li X. L.; Shao B. F.; Xu F. N.; Huang X. H.; Guo X.; Zhou S. B.; Self-blockade of PD-L1 with bacteria-derived outer-membrane vesicle for enhanced cancer immunotherapy. Adv. Mater., 2022, 34, 2106307. doi:10.1002/adma.202106307http://dx.doi.org/10.1002/adma.202106307
Zou M. Z.; Li Z. H.; Bai X. F.; Liu C. J.; Zhang X. Z. Hybrid vesicles based on autologous tumor cell membrane and bacterial outer membrane to enhance innate immune response and personalized tumor immunotherapy. Nano Lett., 2021, 21(20), 8609-8618. doi:10.1021/acs.nanolett.1c02482http://dx.doi.org/10.1021/acs.nanolett.1c02482
Peng L. H.; Wang M. Z.; Chu Y.; Zhang L.; Niu J.; Shao H. T.; Yuan T. J.; Jiang Z. H.; Gao J. Q.; Ning X. H. Engineering bacterial outer membrane vesicles as transdermal nanoplatforms for photo-TRAIL-programmed therapy against melanoma. Sci. Adv., 2020, 6(27), eaba2735. doi:10.1126/sciadv.aba2735http://dx.doi.org/10.1126/sciadv.aba2735
Schaffner, M.; Rühs, P. A.; Coulter, F.; Kilcher, S.; Studart, A. R. 3D printing of bacteria into functional complex materials. Sci. Adv., 2017, 3(12), eaao6804. doi:10.1126/sciadv.aao6804http://dx.doi.org/10.1126/sciadv.aao6804
贺超良, 汤朝晖, 田华雨, 陈学思. 3D打印技术制备生物医用高分子材料的研究进展. 高分子学报, 2013, (6), 722-732.
Chen Q. W.; Li Q. R.; Cao M. W.; Yan J. H.; Zhang X. Z. Hierarchy-assembled dual probiotics system ameliorates cholestatic drug-induced liver injury via gut-liver axis modulation. Adv. Sci., 2022, 9(17), e2200986. doi:10.1002/advs.202200986http://dx.doi.org/10.1002/advs.202200986
Zheng D. W.; Pan P.; Chen K. W.; Fan J. X.; Li C. X.; Cheng H.; Zhang X. Z. An orally delivered microbial cocktail for the removal of nitrogenous metabolic waste in animal models of kidney failure. Nat. Biomed. Eng., 2020, 4(9), 853-862. doi:10.1038/s41551-020-0582-1http://dx.doi.org/10.1038/s41551-020-0582-1
Jiang T. Y.; Yang X. Y.; Li G.; Zhao X. H.; Sun T.; Muller R.; Wang H. L.; Li M. Y.; Zhang Y. M. Bacteria-based live vehicle for in vivo bioluminescence imaging. Anal. Chem., 2021, 93(47), 15687-15695. doi:10.1021/acs.analchem.1c03568http://dx.doi.org/10.1021/acs.analchem.1c03568
Gao R. K.; Liu F.; Liu W. F.; Zeng S. L.; Chen J. Q.; Gao R. R.; Wang L.; Fang C. H.; Song L.; Sedgwick A. C.; Sessler J. L.; Chu J.; Yan F.; Liu C. B. Background-suppressed tumor-targeted photoacoustic imaging using bacterial carriers. Proc. Natl. Acad. Sci. USA, 2022, 119(8), e2121982119. doi:10.1073/pnas.2121982119http://dx.doi.org/10.1073/pnas.2121982119
李丹, 孙盼盼, 李建高, 燕赛赛, 王东, 唐本忠. 聚集诱导发光高分子在光学诊疗应用中的研究进展. 高分子学报, 2022, 53, 856-873. doi:10.11777/j.issn1000-3304.2022.22079http://dx.doi.org/10.11777/j.issn1000-3304.2022.22079
Liu X. Y.; Yang Y. Y.; Inda M. E.; Lin S. T.; Wu J. J.; Kim Y. H.; Chen X. Y.; Ma D. C.; Lu T. K.; Zhao X. H. Magnetic living hydrogels for intestinal localization, retention, and diagnosis. Adv. Funct. Mater., 2021, 31(27), 2010918. doi:10.1002/adfm.202010918http://dx.doi.org/10.1002/adfm.202010918
Courbet A.; Endy D.; Renard E.; Molina F.; Bonnet J. Detection of pathological biomarkers in human clinicalsamples via amplifying genetic switches and logic gates. Sci. Transl. Med., 2015, 7(289), 289ra283. doi:10.1126/scitranslmed.aaa3601http://dx.doi.org/10.1126/scitranslmed.aaa3601
Mimee M.; Nadeau P.; Hayward A.; Carim S.; Flanagan S.; Jerger L.; Collins J.; McDonnell S.; Swartwout R.; Citorik R. J.; Bulovic V.; Langer R.; Traverso G.; Chandrakasan A. P.; Lu T. K. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science, 2018, 360(6391), 915-918. doi:10.1126/science.aas9315http://dx.doi.org/10.1126/science.aas9315
Hong S.; Huang Q. X.; Zhong Z. L.; Rong L.; Zhang X. Z. Photo-initiated coagulation activation and fibrinolysis inhibition for synergetic tumor vascular infarction. CCS Chemistry, 2021, 3, 1893-1910. doi:10.31635/ccschem.021.202100908http://dx.doi.org/10.31635/ccschem.021.202100908
Dong C. Y.; Huang Q. X.; Cheng H.; Zheng D. W.; Hong S.; Yan Y.; Niu M. T.; Xu J. G.; Zhang X. Z. Neisseria meningitidis opca protein/MnO2 hybrid nanoparticles for overcoming the blood-brain barrier to treat glioblastoma. Adv. Mater., 2022, 34(12), e2109213. doi:10.1002/adma.202109213http://dx.doi.org/10.1002/adma.202109213
Chen W. F.; Wang Y.; Qin M.; Zhang X. D.; Zhang Z. R.; Sun X.; Gu Z. Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano, 2018, 12(6), 5995-6005. doi:10.1021/acsnano.8b02235http://dx.doi.org/10.1021/acsnano.8b02235
Zhu C. L.; Yang Q.; Lv F. T.; Liu L. B.; Wang S. Conjugated polymer-coated bacteria for multimodal intracellular and extracellular anticancer activity. Adv. Mater., 2013, 25(8), 1203-1208. doi:10.1002/adma.201204550http://dx.doi.org/10.1002/adma.201204550
韩子意, 白雪峰, 王钰璋, 陈其文, 张先正. 用于增强结肠癌化疗的肠道菌群葡萄糖醛酸酶响应甘草酸胶束. 高分子学报, 2022, 53, 626-635. doi:10.11777/j.issn1000-3304.2022.22021http://dx.doi.org/10.11777/j.issn1000-3304.2022.22021
Pan J. Z.; Gong G. D.; Wang Q.; Shang J. J.; He Y. X.; Catania C.; Birnbaum D.; Li Y. F.; Jia Z. J.; Zhang Y. Y.; Joshi N. S.; Guo J. L. A single-cell nanocoating of probiotics for enhanced amelioration of antibiotic-associated diarrhea. Nat. Commun., 2022, 13(1), 2117. doi:10.1038/s41467-022-29672-zhttp://dx.doi.org/10.1038/s41467-022-29672-z
Liu J.; Li W.; Wang Y. X.; Ding Y. Y.; Lee A.; Hu Q. Y. Biomaterials coating for on-demand bacteria delivery: Selective release, adhesion, and detachment. Nano Today, 2021, 41, 101291. doi:10.1016/j.nantod.2021.101291http://dx.doi.org/10.1016/j.nantod.2021.101291
Chen Y. G.; Li C. X.; Zhang Y.; Qi Y. D.; Feng J.; Zhang X. Z. Antibacterial sutures coated with smooth chitosan layer by gradient deposition. Chinese J. Polym. Sci., 2022, 40, 1050-1061. doi:10.1007/s10118-022-2770-9http://dx.doi.org/10.1007/s10118-022-2770-9
Han N.; Jia L.; Su Y.; Du J.; Guo L.; Luo Z.; Liu Y. Lactobacillus reuteri extracts promoted wound healing via PI3K/AKT/β-catenin/TGFβ1 pathway. Stem. Cell Res. Ther., 2019, 10(1), 243. doi:10.1186/s13287-019-1324-8http://dx.doi.org/10.1186/s13287-019-1324-8
Vagesjo E.; Ohnstedt E.; Mortier A.; Lofton H.; Huss F.; Proost P.; Roos S.; Phillipson M. Accelerated wound healing in mice by on-site production and delivery of CXCL12 by transformed lactic acid bacteria. Proc. Natl. Acad. Sci. USA, 2018, 115(8), 1895-1900. doi:10.1073/pnas.1716580115http://dx.doi.org/10.1073/pnas.1716580115
Ming Z. Z.; Han L.; Bao M. Y.; Zhu H. H.; Qiang S. J.; Xue S. B.; Liu W. W. Living bacterial hydrogels for accelerated infected wound healing. Adv. Sci., 2021, 8(24), e2102545. doi:10.1002/advs.202102545http://dx.doi.org/10.1002/advs.202102545
Begnini K. R.; Buss J. H.; Collares T.; Seixas F. K. Recombinant Mycobacterium bovis BCG for immunotherapy in nonmuscle invasive bladder cancer. Appl. Microbiol. Biotechnol., 2015, 99(9), 3741-3754. doi:10.1007/s00253-015-6495-3http://dx.doi.org/10.1007/s00253-015-6495-3
Chen W. H.; Cohen M. B.; Kirkpatrick B. D.; Brady R. C.; Galloway D.; Gurwith M.; Hall R. H.; Kessler R. A.; Lock M.; Haney D.; Lyon C. E.; Pasetti M. F.; Simon J. K.; Szabo F.; Tennant S.; Levine M. M. Single-dose live oral cholera vaccine CVD 103-HgR protects against human experimental infection with vibrio cholerae O1 El Tor. Clin. Infect. Dis., 2016, 62(11), 1329-1335. doi:10.1093/cid/ciw145http://dx.doi.org/10.1093/cid/ciw145
Costello S. P.; Hughes P. A.; Waters O.; Bryant R. V.; Vincent A. D.; Blatchford P.; Katsikeros R.; Makanyanga J.; Campaniello M. A.; Mavrangelos C.; Rosewarne C. P.; Bickley C.; Peters C.; Schoeman M. N.; Conlon M. A.; Roberts-Thomson I. C.; Andrews J. M. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. JAMA, 2019, 321(2), 156-164. doi:10.1001/jama.2018.20046http://dx.doi.org/10.1001/jama.2018.20046
Groot P. D.; Nikolic T.; Pellegrini S.; Sordi V.; Imangaliyev S.; Rampanelli E.; Hanssen N.; Attaye I.; Bakker G.; Duinkerken G.; Joosten A.; Prodan A.; Levin E.; Levels H.; Potter V. L. B.; Bon A. V.; Brouwer C.; Dam S. V.; Simsek S.; Raalte D. V.; Stam F.; Gerdes V.; Hoogma R.; Diekman M.; Gerding M.; Rustemeijer C.; Bakker B. D.; Hoekstra J.; Zwinderman A.; Bergman J.; Holleman F.; Piemonti L.; Vos W. D.; Roep B.; Nieuwdorp M. Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial. Gut, 2021, 70(1), 92-105. doi:10.1136/gutjnl-2020-322630http://dx.doi.org/10.1136/gutjnl-2020-322630
Nakatsuji T.; Hata T. R.; Tong Y.; Cheng J. Y.; Shafiq F.; Butcher A. M.; Salem S. S.; Brinton S. L.; Rudman Spergel A. K.; Johnson K.; Jepson B.; Calatroni A.; David G.; Ramirez-Gama M.; Taylor P.; Leung D. Y. M.; Gallo R. L. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nat. Med., 2021, 27(4), 700-709. doi:10.1038/s41591-021-01256-2http://dx.doi.org/10.1038/s41591-021-01256-2
Pangilinan C. R.; Lee C. H. Highlights of immunomodulation in salmonella-based cancer therapy. Biomedicines, 2021, 9(11), 1566. doi:10.3390/biomedicines9111566http://dx.doi.org/10.3390/biomedicines9111566
Masomian M.; Ahmad Z.; Gew L. T.; Poh C. L. Development of next generation streptococcus pneumoniae vaccines conferring broad protection. Vaccines, 2020, 8(1), 132. doi:10.3390/vaccines8010132http://dx.doi.org/10.3390/vaccines8010132
Wei M. Y.; Shi S.; Liang C.; Meng Q. C.; Hua J.; Zhang Y. Y.; Liu J.; Zhang B.; Xu J.; Yu X. J. The microbiota and microbiome in pancreatic cancer: more influential than expected. Mol. Cancer, 2019, 18(1), 97. doi:10.1186/s12943-019-1008-0http://dx.doi.org/10.1186/s12943-019-1008-0
Duong M. T.; Qin Y.; You S. H.; Min J. J. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp. Mol. Med., 2019, 51(12), 1-15. doi:10.1038/s12276-019-0297-0http://dx.doi.org/10.1038/s12276-019-0297-0
McNerney M. P.; Doiron K. E.; Ng T. L.; Chang T. Z.; Silver P. A. Theranostic cells: emerging clinical applications of synthetic biology. Nat. Rev. Genet., 2021, 22(11), 730-746. doi:10.1038/s41576-021-00383-3http://dx.doi.org/10.1038/s41576-021-00383-3
Wang D.; Wei X.; Kalvakolanu D. V.; Guo B. F.; Zhang L. Perspectives on oncolytic salmonella in cancer immunotherapy-a promising strategy. Front. Immunol., 2021, 12, 615930. doi:10.3389/fimmu.2021.615930http://dx.doi.org/10.3389/fimmu.2021.615930
Chen Z. P.; Lin S. Z.; Duan J. F.; Luo Y.; Wang S. Y.; Gan Z. K.; Yi H. M.; Wu T.; Huang S.; Zhang Q.; Lv H. K. Immunogenicity and safety of an accelerated hepatitis e vaccination schedule in healthy adults: a randomized, controlled, open-label, phase Ⅳ trial. Clin. Microbiol. Infect., 2019, 25(9), 1133-1139. doi:10.1016/j.cmi.2019.01.015http://dx.doi.org/10.1016/j.cmi.2019.01.015
Lopez-Moreno A.; Acuna I.; Torres-Sanchez A.; Ruiz-Moreno A.; Cerk K.; Rivas A.; Suarez A.; Monteoliva-Sanchez M.; Aguilera M. Next generation probiotics for neutralizing obesogenic effects: taxa culturing searching strategies. Nutrients, 2021, 13(5), 1617. doi:10.3390/nu13051617http://dx.doi.org/10.3390/nu13051617
Anderson E. M.; Thomassian S.; Gong J.; Hendifar A.; Osipov A. Advances in pancreatic ductal adenocarcinoma treatment. Cancers, 2021, 13(21), 5510. doi:10.3390/cancers13215510http://dx.doi.org/10.3390/cancers13215510
Morrow L. E.; Kollef M. H.; Casale T. B. Probiotic prophylaxis of ventilator-associated pneumonia: a blinded, randomized, controlled trial. Am. J. Respir. Crit. Care Med., 2010, 182(8), 1058-1064. doi:10.1164/rccm.200912-1853ochttp://dx.doi.org/10.1164/rccm.200912-1853oc
Armstrong E.; Hemmerling A.; Miller S.; Burke K. E.; Newmann S. J.; Morris S. R.; Reno H.; Huibner S.; Kulikova M.; Liu R.; Crawford E. D.; Castaneda G. R.; Nagelkerke N.; Coburn B.; Cohen C. R.; Kaul R. Metronidazole treatment rapidly reduces genital inflammation through effects on bacterial vaginosis-associated bacteria rather than lactobacilli. J. Clin. Invest., 2022, 132(6), e152930. doi:10.1172/jci152930http://dx.doi.org/10.1172/jci152930
Stapleton A. E.; Au-Yeung M.; Hooton T. M.; Fredricks D. N.; Roberts P. L.; Czaja C. A.; Yarova-Yarovaya Y.; Fiedler T.; Cox M.; Stamm W. E. Randomized, placebo-controlled phase 2 trial of a lactobacillus crispatus probiotic given intravaginally for prevention of recurrent urinary tract infection. Clin. Infect. Dis., 2011, 52(10), 1212-1217. doi:10.1093/cid/cir183http://dx.doi.org/10.1093/cid/cir183
Hong N.; Ku S.; Yuk K.; Johnston T. V.; Ji G. E.; Park M. S. Production of biologically active human interleukin-10 by bifidobacterium bifidum BGN4. Microb. Cell Fact., 2021, 20(1), 16. doi:10.1186/s12934-020-01505-yhttp://dx.doi.org/10.1186/s12934-020-01505-y
Schnadower D.; Tarr P. I.; Casper T. C.; Gorelick M. H.; Dean J. M.; O'Connell K. J.; Mahajan P.; Levine A. C.; Bhatt S. R.; Roskind C. G.; Powell E. C.; Rogers A. J.; Vance C.; Sapien R. E.; Olsen C. S.; Metheney M.; Dickey V. P.; Hall-Moore C.; Freedman S. B. Lactobacillus rhamnosus GG versus placebo for acute gastroenteritis in children. N. Engl. J. Med., 2018, 379(21), 2002-2014. doi:10.1056/nejmoa1802598http://dx.doi.org/10.1056/nejmoa1802598
Hammeken L. H.; Baunwall S. M. D.; Dahlerup J. F.; Hvas C. L.; Ehlers L. H. Health-related quality of life in patients with recurrent clostridioides difficile infections. Therap. Adv. Gastroenterol., 2022, 15, 1-8. doi:10.1177/17562848221078441http://dx.doi.org/10.1177/17562848221078441
Goldstein J.; Levy C. Novel and emerging therapies for cholestatic liver diseases. Liver Int., 2018, 38(9), 1520-1535. doi:10.1111/liv.13880http://dx.doi.org/10.1111/liv.13880
0
Views
132
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution