浏览全部资源
扫码关注微信
河北科技大学纺织服装学院 河北省纺织服装技术创新中心 石家庄 050018
Ming-xing Chen, E-mail: chenmingxing@hebust.edu.cn
Published:20 April 2023,
Published Online:16 December 2022,
Received:10 October 2022,
Accepted:15 November 2022
扫 描 看 全 文
郝天煦,张威,王新亚等.ZIFs改性聚丙烯熔喷空气过滤材料的制备及其性能研究[J].高分子学报,2023,54(04):509-519.
Hao Tian-xu,Zhang Wei,Wang Xin-ya,et al.Preparation and Properties of Zeolitic Imidazolate Framework Modified Polypropylene Melt-blown Air Filter Materials[J].ACTA POLYMERICA SINICA,2023,54(04):509-519.
郝天煦,张威,王新亚等.ZIFs改性聚丙烯熔喷空气过滤材料的制备及其性能研究[J].高分子学报,2023,54(04):509-519. DOI: 10.11777/j.issn1000-3304.2022.22340.
Hao Tian-xu,Zhang Wei,Wang Xin-ya,et al.Preparation and Properties of Zeolitic Imidazolate Framework Modified Polypropylene Melt-blown Air Filter Materials[J].ACTA POLYMERICA SINICA,2023,54(04):509-519. DOI: 10.11777/j.issn1000-3304.2022.22340.
高效空气过滤材料的开发对于空气污染治理具有重要意义. 然传统熔喷空气过滤材料过滤性能稳定性差,限制了其应用. 本文以PP熔喷空气过滤材料为基体,通过原位生长的方式在其表面构筑类沸石咪唑酯骨架结构材料(ZIF-L)功能层,制备具有微/纳结构的PP/ZIF-L熔喷过滤材料. ZIF-L的原位生长可以有效调控PP熔喷非织造材料结构和性能,进而有效解决PP熔喷空气过滤材料过滤稳定性差、不可重复利用的缺点. 通过多种表征手段和测试方法研究了ZIF-L的原位生长对PP熔喷空气过滤材料结构和性能的影响. 结果表明,ZIF-L的原位生长可有效提升PP熔喷空气过滤材料的过滤性能,其对PM2.5的过滤效果可从55.2%提升至93.2%. 此外,PP/ZIF-L熔喷空气过滤材料具有优异的可重复使用性,经过75%医用酒精消毒后,过滤效率基本不变,依然保持在92.4%,并且在不同颗粒物大小,不同颗粒物浓度,不同风速和长时间使用等条件下依然保持优异过滤性能. 所制备PP/ZIF-L熔喷空气过滤材料在空气过滤领域具有广阔的应用前景,可为高性能PP熔喷非织造滤料的制备提供一定参考.
Recently
the problem of air pollution has become more and more serious. The preparation of high-efficiency air filter materials (AFMs) is of great significance in solving the air pollution problem. In this study
the micro/nanostructured PP/ZIF-L melt-blown AFMs were prepared
via in situ
growth method with the PP melt-blown AFMs as the matrix. The
in situ
growth of ZIF-L can effectively regulate the structure and properties of PP melt-blown AFMs
and thus solve the shortcomings of PP melt-blown AFMs with poor filtration stability and non-reusability. The effects of
in situ
growth of ZIF-L on the structure and properties of PP melt-blown AFMs were investigated by various methods. The results showed that the
in situ
growth of ZIF-L can effectively improve the filtration performance of PP melt-blown AFMs. The filtration efficiency of PM2.5 increased from 55.2% to 93.2% after the growth of ZIF-L on PP melt-blown AFMs' surface. Moreover
the PP/ZIF-L melt-blown AFMs had excellent reusability. The PP/ZIF-L melt-blown AFMs still showed a higher filtration efficiency (92.4%) after washing with 75% alcohol
while that of the commercial PP melt-blown AFMs was only 56.8%. The PP/ZIF-L melt-blown AFMs showed a broad application prospect in the field of air filtration and can provide a certain reference for the preparation of high-performance PP melt-blown AFMs.
原位生长类沸石咪唑酯骨架结构材料聚丙烯熔喷过滤材料单宁酸空气过滤性能
In situ growthZeolitic imidazolate frameworkPP melt-blown air filter materialsTannic acidAir filtration performance
Fan X.; Wang Y.; Kong L.; Fu X.; Zheng M.; Liu T.; Zhong W. H.; Pan S. A nanoprotein-functionalized hierarchical composite air filter. ACS Sustainable Chem. Eng., 2018, 6(9), 11606-11613. doi:10.1021/acssuschemeng.8b01827http://dx.doi.org/10.1021/acssuschemeng.8b01827
Zhu M.; Hua D.; Zhong M.; Zhang L.; Wang F.; Gao B.; Xiong R.; Huang C. Antibacterial and eective air filtration membranes by "green" electrospinning and citric acid crosslinking. Colloids Interface Sci. Commun., 2018, 23, 52-58. doi:10.1016/j.colcom.2018.01.002http://dx.doi.org/10.1016/j.colcom.2018.01.002
Du P.; Du R.; Ren W.; Lu Z.; Zhang Y.; Fu P. Variations of bacteria and fungi in PM 2.5 Beijingin, China. Atmos. Environ., 2018, 172, 55-64. doi:10.1016/j.atmosenv.2017.10.048http://dx.doi.org/10.1016/j.atmosenv.2017.10.048
王娇娜,马利婵,李丽,李从举. 静电纺PES微球/纤维低阻力复合空气过滤膜的研究. 高分子学报, 2014, (11), 1479-1485. doi:10.11777/j.issn1000-3304.2014.14066http://dx.doi.org/10.11777/j.issn1000-3304.2014.14066
Xu J.; Xiao X.; Zhang W.; Xu R.; Sang C. K.; Cui Y.; Howard T. T.; Wu E.; Cui Y. Air-filtering masks for respiratory protection from pm 2.5 and pandemic pathogens. One Earth., 2020, 3(5), 574-589. doi:10.1016/j.oneear.2020.10.014http://dx.doi.org/10.1016/j.oneear.2020.10.014
Zhang H.; Zhen Q.; Liu Y.; Liu R. T.; Zhang Y. F. One-step melt blowing process for PP/PEG micro-nanofiber filters with branch networks. Results Phys., 2019, 12, 1421-1428. doi:10.1016/j.rinp.2019.01.012http://dx.doi.org/10.1016/j.rinp.2019.01.012
陈海明,董侠,赵莹,王笃金. 废弃一次性医用口罩的回收利用与化学升级再造. 高分子学报, 2020, 51(12), 1295-1306. doi:10.11777/j.issn1000-3304.2020.20136http://dx.doi.org/10.11777/j.issn1000-3304.2020.20136
Thakur R.; Das D.; Das A. Electret air filters. Sep. Purif. Rev., 2013, 42(2), 87-129. doi:10.1080/15422119.2012.681094http://dx.doi.org/10.1080/15422119.2012.681094
Kara Y.; Molnar K. A review of processing strategies to generate melt-blown nano/microfiber mats for high-efficiency filtration applications. J. Ind. Text., 2022, 51(1S), 137S-180S. doi:10.1177/15280837211019488http://dx.doi.org/10.1177/15280837211019488
Furukawa H.; Cordova K. E.; O'Keeffe M.; Yaghi O. M. Cheminform abstract: The chemistry and applications of metal-organic frameworks. Science., 2013, 341(6149), 1230444. doi:10.1126/science.1230444http://dx.doi.org/10.1126/science.1230444
Cai R. R.; Zhang L. Z.; Bao A. B. PM collection performance of electret filters electrospun with different dielectric materials-a numerical modeling and experimental study. Build. Sci., 2018, 131, 210-219. doi:10.1016/j.buildenv.2017.12.036http://dx.doi.org/10.1016/j.buildenv.2017.12.036
唐文强,刘绍英,欧阳春,姜伟,王公应. Zn-MOFs催化合成聚丁二酸乙二醇酯和碳酸二甲酯的研究. 高分子学报, 2016, (5), 628-636. doi:10.11777/j.issn1000-3304.2016.15270http://dx.doi.org/10.11777/j.issn1000-3304.2016.15270
李禹红,乔瑶雨,李超,何乃普,闻静,赵晓竹,张学辉,黎白钰. ZIF-8@PDMAPMA复合材料的构筑及其性能研究. 高分子学报, 2021, 52(9), 1174-1183. doi:10.11777/j.issn1000-3304.2021.21041http://dx.doi.org/10.11777/j.issn1000-3304.2021.21041
Ma S. S.; Zhang M. Y.; Nie J. Y.; Yang B.; Song S. X.; Lu P. Multifunctional cellulose-based air filters with high loadings of metal-organic frameworks prepared by in situ growth method for gas adsorption and antibacterial applications. Cellulose., 2018, 25(10), 5999-6010. doi:10.1007/s10570-018-1982-1http://dx.doi.org/10.1007/s10570-018-1982-1
Koo W. T.; Jang J. S.; Qiao S.; Hwang W.; Jha G.; Penner R. M.; Kim I. D. Hierarchical metal-organic framework-assembled membrane filter for efficient removal of particulate matter. ACS Appl. Mater. Interfaces., 2018, 10(23), 19957-19963. doi:10.1021/acsami.8b02986http://dx.doi.org/10.1021/acsami.8b02986
Huang C.; Zhang H.; Zheng K.; Zhang Z.; Jiang Q.; Li J. Two-dimensional hydrophilic ZIF-L as a highly-selective adsorbent for rapid phosphate removal from wastewater. Sci. Total Environ., 2021, 785, 147382. doi:10.1016/j.scitotenv.2021.147382http://dx.doi.org/10.1016/j.scitotenv.2021.147382
Valencia L.; Abdelhamid H. N. Nanocellulose leaf-like zeolitic imidazolate framework (ZIF-L) foams for selective capture of carbon dioxide. Carbohydr. Polym., 2019, 213, 338-345. doi:10.1016/j.carbpol.2019.03.011http://dx.doi.org/10.1016/j.carbpol.2019.03.011
Ding B.; Wang X.; Xu Y.; Feng S.; Ding Y.; Pan Y.; Xu W.; Wang H. Hydrothermal preparation of hierarchical ZIF-L nanostructures for enhanced CO2 capture. J. Colloid Interface Sci., 2018, 519, 38-43. doi:10.1016/j.jcis.2018.02.047http://dx.doi.org/10.1016/j.jcis.2018.02.047
Hamidon N. F.; Tahir M. I. M.; Latif M. A. M.; Abdul Rahman M. B. Effect of altering linker ratio on nano-ZIF-8 polymorphisms in water-based and modulator-free synthesis. J. Coord. Chem., 2022, 75(9-10), 1180-1192. doi:10.1080/00958972.2022.2100990http://dx.doi.org/10.1080/00958972.2022.2100990
Liu W.; Ban Y.; Liu J.; Wang Y.; Hu Z.; Wang Y.; Li Q.; Yang W. ZIF-L based mixed matrix membranes for acetone-butanol-ethanol (ABE) recovery from diluted aqueous solution. Sep. Purif. Technol., 2021, 276, 119085. doi:10.1016/j.seppur.2021.119085http://dx.doi.org/10.1016/j.seppur.2021.119085
0
Views
76
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution