浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 中国科学院生态环境高分子材料重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
Shun-jie Liu, E-mail: sjliu@ciac.ac.cn
Xian-hong Wang, E-mail: xhwang@ciac.ac.cn
Published:20 May 2023,
Published Online:02 December 2022,
Received:17 October 2022,
Accepted:18 November 2022
扫 描 看 全 文
卓春伟,曹瀚,周振震等.高分子铝卟啉体系:二氧化碳基多元醇的高效可控合成[J].高分子学报,2023,54(05):601-611.
Zhuo Chun-wei,Cao Han,Zhou Zhen-zhen,et al.Polymeric Aluminum Porphyrin Systems: Efficient and Controllable Synthesis of Carbon Dioxide-based Polyols[J].ACTA POLYMERICA SINICA,2023,54(05):601-611.
卓春伟,曹瀚,周振震等.高分子铝卟啉体系:二氧化碳基多元醇的高效可控合成[J].高分子学报,2023,54(05):601-611. DOI: 10.11777/j.issn1000-3304.2022.22349.
Zhuo Chun-wei,Cao Han,Zhou Zhen-zhen,et al.Polymeric Aluminum Porphyrin Systems: Efficient and Controllable Synthesis of Carbon Dioxide-based Polyols[J].ACTA POLYMERICA SINICA,2023,54(05):601-611. DOI: 10.11777/j.issn1000-3304.2022.22349.
二氧化碳基多元醇(CO
2
-polyol)是一种具有经济、环境双效益的聚氨酯前体材料,然而高效催化体系的缺乏制约着该领域的发展. 本文将新型高分子铝卟啉(PCAT-Al)催化体系应用于CO
2
与环氧丙烷的调节聚合反应,采用癸二酸、均苯三甲酸、均苯四甲酸和二季戊四醇作为链转移剂,实现CO
2
-polyol的可控合成. 在不同链转移剂条件下,PCAT-Al的催化效率均大于3.6 kg/g,可高效地制备分子量为470~5600 g/mol的CO
2
-polyol. 以癸二酸制备二元醇时,PCAT-Al的催化效率可达到6.3 kg/g,并保持高产物选择性(
W
polyol
= 98.9 wt%,100 ℃). 值得注意的是,PCAT-Al在制备支化多元醇时展现出比传统DMC催化剂更优异的催化性能. 在三元醇、四元醇及六元醇合成中的产物选择性分别达到99.3 wt%,98.2 wt%及95.1 wt%,显著高于DMC体系的88.8 wt%,83.0 wt%及75.8 wt%,表明PCAT-Al体系具有优异的聚合反应可控性. 此外,鉴于优异的质子耐受性,PCAT-Al在高链转移剂负载量下可有效地制备超低分子量CO
2
-二元醇(
M
n
= 470 g/mol). 在CO
2
与PO的调节聚合反应中,PCAT-Al表现出高活性、高选择性和优异质子耐受性的催化优势,这对CO
2
-polyol的持续发展具有重要意义.
Carbon dioxide-based polyols (CO
2
-polyol) are emerging polyurethane precursors with economical and environmental benefits
however
the limited efficient catalytic systems restrict the sustainable development of this field. In this work
the novel catalytic system of polymeric aluminum porphyrin (PCAT-Al) was applied to the telomerization of CO
2
and propylene oxide
where the sebacic acid
trimesic acid
pyromellitic acid
and dipentaerythritol were used as the chain transfer agent (CTA) to achieve the controllable synthesis of CO
2
-polyols. The catalytic efficiency of PCAT-Al was greater than 3.6 kg/g under different chain transfer agents
and the CO
2
-polyol with molecular weights ranging from 470 g/mol to 5600 g/mol can be perpared efficiently. Meanwhile
the catalytic efficiency of PCAT-Al reached 6.3 kg/g with high product selectivity (
W
polyol
= 98.9 wt% at 100 ℃) for the preparation of CO
2
-diols with sebacic acid. Notably
PCAT-Al exhibited higher catalytic performance than conventional DMC catalysts in the preparation of branched polyols. The product selectivity in the synthesis of tertiary alcohols
tetrahydric alcohols
and hexahydric alcohols reached 99.3 wt%
98.2 wt%
and 95.1 wt%
respectively
which were significantly higher than those of the DMC system at 88.8 wt%
83.0 wt%
and 75.8 wt%
indicating that the PCAT-Al system had excellent controllability of the polymerization reaction. Moreover
PCAT-Al can be used to effectively prepare CO
2
-diols with ultra-low molecular weight (
M
n
= 470 g/mol) under high-loading chain transfer due to the excellent proton tolerance. PCAT-Al exhibits catalytic advantages of high activity
high selectivity and excellent proton tolerance in the CO
2
-polymerization reaction with PO
which is of great importance for the continued development of CO
2
-polyol.
高分子催化剂二氧化碳基多元醇铝卟啉高选择性结构调控
Polymeric catalystCO2-polyolAluminum porphyrinHigh selectivityStructural regulation
陈学思, 陈国强, 陶友华, 王玉忠, 吕小兵, 张立群, 朱锦, 张军, 王献红. 生态环境高分子的研究进展. 高分子学报, 2019, 50, 1068-1082. doi:10.11777/j.issn1000-3304.2019.19124http://dx.doi.org/10.11777/j.issn1000-3304.2019.19124
Hepburn C.; Adlen E.; Beddington J.; Carter E. A.; Fuss S.; Mac Dowell N.; Minx J. C.; Smith P.; Williams C. K. The technological and economic prospects for CO2 utilization and removal. Nature, 2019, 575, 87-97. doi:10.1038/s41586-019-1681-6http://dx.doi.org/10.1038/s41586-019-1681-6
吕小兵. 立构规整性二氧化碳共聚物: 从无定型到结晶性材料转变. 高分子学报, 2016, (9), 1166-1178. doi:10.11777/j.issn1000-3304.2016.16151http://dx.doi.org/10.11777/j.issn1000-3304.2016.16151
Leow W. R.; Lum Y.; Ozden A.; Wang Y. H.; Nam D. H.; Chen B.; Wicks J.; Zhuang T. T.; Li F. W.; Sinton D.; Sargent E. H. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science, 2020, 368, 1228-1233. doi:10.1126/science.aaz8459http://dx.doi.org/10.1126/science.aaz8459
Buchner G. A.; Wulfes N.; Schomäcker R. Techno-economic assessment of CO2-containing polyurethane rubbers. J. CO2 Util., 2020, 36, 153-168. doi:10.1016/j.jcou.2019.11.010http://dx.doi.org/10.1016/j.jcou.2019.11.010
von der Assen N.; Bardow A. Life cycle assessment of polyols for polyurethane production using CO2 feedstockas: insights from an industrial case study. Green Chem., 2014, 16(6), 3272-3280. doi:10.1039/c4gc00513ahttp://dx.doi.org/10.1039/c4gc00513a
Meys R.; Kaetelhoen A.; Bardow A. Towards sustainable elastomers from CO2: life cycle assessment of carbon capture and utilization for rubbers. Green Chem., 2019, 21, 3334-3342. doi:10.1039/c9gc00267ghttp://dx.doi.org/10.1039/c9gc00267g
Wang J.; Zhang H. M.; Miao Y. Y.; Qiao L. J.; Wang X. H.; Wang F. S. Waterborne polyurethanes from CO2 based polyols with comprehensive hydrolysis/oxidation resistance. Green Chem., 2016, 18, 524-530. doi:10.1039/c5gc01373ahttp://dx.doi.org/10.1039/c5gc01373a
Wang J.; Zhang H. M.; Miao Y. Y.; Qiao L. J.; Wang X. H.; Wang F. S. UV-curable waterborne polyurethane from CO2-polyol with high hydrolysis resistance. Polymer, 2016, 100, 219-226. doi:10.1016/j.polymer.2016.08.039http://dx.doi.org/10.1016/j.polymer.2016.08.039
Gong R. N.; Cao H.; Zhang H. M.; Qiao L. J.; Wang X. H. UV-curable cationic waterborne polyurethane from CO2-polyol with excellent water resistance. Polymer, 2021, 218, 123536. doi:10.1016/j.polymer.2021.123536http://dx.doi.org/10.1016/j.polymer.2021.123536
付双滨, 秦玉升, 乔立军, 王献红, 王佛松. 高伯羟基含量聚(碳酸酯-醚)多元醇的制备. 高分子学报, 2019, 50(4), 338-343. doi:10.11777/j.issn1000-3304.2018.18274http://dx.doi.org/10.11777/j.issn1000-3304.2018.18274
Pohl M.; Danieli E.; Leven M.; Leitner W.; Blümich B.; Müller T. E. Dynamics of polyether polyols and polyether carbonate polyols. Macromolecules, 2016, 49, 8995-9003. doi:10.1021/acs.macromol.6b01601http://dx.doi.org/10.1021/acs.macromol.6b01601
Darensbourg D. J. Chain transfer agents utilized in epoxide and CO2 copolymerization processes. Green Chem., 2019, 21, 2214-2223. doi:10.1039/c9gc00620fhttp://dx.doi.org/10.1039/c9gc00620f
Böhm K.; Maerten S. G.; Liauw M. A.; Müller T. E. Exploring the Sequence of Comonomer Insertion into Growing Poly(ether carbonate) Chains with Monte Carlo Methods. Macromolecules, 2020, 53, 6861-6865. doi:10.1021/acs.macromol.0c00825http://dx.doi.org/10.1021/acs.macromol.0c00825
Gao Y. G.; Gu L.; Qin Y. S.; Wang X. H.; Wang F. S. Dicarboxylic acid promoted immortal copolymerization for controllable synthesis of low-molecular weight oligo(carbonate-ether) diols with tunable carbonate unit content. J. Polym. Sci. A Polym. Chem., 2012, 50, 5177-5184. doi:10.1002/pola.26366http://dx.doi.org/10.1002/pola.26366
Liu S. J.; Qin Y. S.; Chen X. S.; Wang X. H.; Wang F. S. One-pot controllable synthesis of oligo(carbonate-ether) triol using a Zn-Co-DMC catalyst: the special role of trimesic acid as an initiation-transfer agent. Polym. Chem., 2014, 5(21), 6171-6179. doi:10.1039/c4py00578chttp://dx.doi.org/10.1039/c4py00578c
Liu S. J.; Miao Y. Y.; Qiao L. J.; Qin Y. S.; Wang X. H.; Chen X. S.; Wang F. S. Controllable synthesis of a narrow polydispersity CO2-based oligo(carbonate-ether) tetraol. Polym. Chem., 2015, 6(43), 7580-7585. doi:10.1039/c5py00556fhttp://dx.doi.org/10.1039/c5py00556f
王萍, 刘顺杰, 秦玉升, 王献红, 王佛松. 支化结构二氧化碳基六元醇的可控合成. 高分子学报, 2017, 2, 259-265. doi:10.11777/j.issn1000-3304.2017.16210http://dx.doi.org/10.11777/j.issn1000-3304.2017.16210
Darensbourg D. J.; Wu G. P. A one-pot synthesis of a triblock copolymer from propylene oxide/carbon dioxide and lactide: Intermediacy of polyol initiators. Angew. Chem. Int. Ed. Engl., 2013, 52, 10602-10606. doi:10.1002/anie.201304778http://dx.doi.org/10.1002/anie.201304778
Nakano K.; Kamada T.; Nozaki K. Selective formation of polycarbonate over cyclic carbonate: copolymerization of epoxides with carbon dioxide catalyzed by a cobalt(III) complex with a piperidinium end-capping arm. Angew. Chem. Int. Ed. Engl., 2006, 45, 7274-7277. doi:10.1002/anie.200603132http://dx.doi.org/10.1002/anie.200603132
Cyriac A.; Lee S. H.; Varghese J. K.; Park E. S.; Park J. H.; Lee B. Y. Immortal CO2/propylene oxide copolymerization: precise control of molecular weight and architecture of various block copolymers. Macromolecules, 2010, 43, 7398-7401. doi:10.1021/ma101259khttp://dx.doi.org/10.1021/ma101259k
Varghese J. K.; Cyriac A.; Lee B. Y. Incorporation of ether linkage in CO2/propylene oxide copolymerization by dual catalysis. Polyhedron, 2012, 32, 90-95. doi:10.1016/j.poly.2011.05.022http://dx.doi.org/10.1016/j.poly.2011.05.022
Liu S. J.; Qin Y. S.; Qiao L. J.; Miao Y. Y.; Wang X. H.; Wang F. S. Cheap and fast: oxalic acid initiated CO2-based polyols synthesized by a novel preactivation approach. Polym. Chem., 2016, 7, 146-152. doi:10.1039/c5py01338khttp://dx.doi.org/10.1039/c5py01338k
Coates G. W.; Lee S.; Qin Z.; Robertson N. J. WO patent, C08G64/0208, 2008024363A2. 2008-04-24.
Kember M. R.; Knight P. D.; Reung P. T. R.; Williams C. K. Highly active dizinc catalyst for the copolymerization of carbon dioxide and cyclohexene oxide at one atmosphere pressure. Angew. Chem. Int. Ed. Engl., 2009, 48, 931-933. doi:10.1002/anie.200803896http://dx.doi.org/10.1002/anie.200803896
Robert C.; Ohkawara T.; Nozaki K. Manganese-corrole complexes as versatile catalysts for the ring-opening homo- and co-polymerization of epoxide. Chemistry, 2014, 20, 4789-4795. doi:10.1002/chem.201303703http://dx.doi.org/10.1002/chem.201303703
Vagin S. I.; Reichardt R.; Klaus S.; Rieger B. Conformationally flexible dimeric salphen complexes for bifunctional catalysis. J. Am. Chem. Soc., 2010, 132, 14367-14369. doi:10.1021/ja106484thttp://dx.doi.org/10.1021/ja106484t
Kissling S.; Lehenmeier M. W.; Altenbuchner P. T.; Kronast A.; Reiter M.; Deglmann P.; Seemann U. B.; Rieger B. Dinuclear zinc catalysts with unprecedented activities for the copolymerization of cyclohexene oxide and CO2. Chem. Commun. (Camb), 2015, 51(22), 4579-4582. doi:10.1039/c5cc00784dhttp://dx.doi.org/10.1039/c5cc00784d
Noh E. K.; Na S. J.; Sujith S.; Kim S. W.; Lee B. Y. Two components in a molecule: highly efficient and thermally robust catalytic system for CO2/epoxide copolymerization. J. Am. Chem. Soc., 2007, 129(26), 8082-8083. doi:10.1021/ja071290nhttp://dx.doi.org/10.1021/ja071290n
Ren W. M.; Liu Z. W.; Wen Y. Q.; Zhang R.; Lu X. B. Mechanistic aspects of the copolymerization of CO2 with epoxides using a thermally stable single-site cobalt(III) catalyst. J. Am. Chem. Soc., 2009, 131, 11509-11518. doi:10.1021/ja9033999http://dx.doi.org/10.1021/ja9033999
Wu W.; Sheng X. F.; Qin Y. S.; Qiao L. J.; Miao Y. Y.; Wang X. H.; Wang F. S. Bifunctional aluminum porphyrin complex: soil tolerant catalyst for copolymerization of CO2 and propylene oxide. J. Polym. Sci., PartA: Polym. Chem., 2014, 52, 2346-2355. doi:10.1002/pola.27247http://dx.doi.org/10.1002/pola.27247
Cao H.; Qin Y. S.; Zhuo C. W.; Wang X. H.; Wang F. S. Homogeneous metallic oligomer catalyst with multisite intramolecular cooperativity for the synthesis of CO2-based polymers. ACS Catal., 2019, 9, 8669-8676. doi:10.1021/acscatal.9b02741http://dx.doi.org/10.1021/acscatal.9b02741
卓春伟, 秦玉升, 曹瀚, 王献红, 王佛松. 中国专利, C08G61/08, 109988290B. 2021-05-28.
Cao H.; Zhang R. Y.; Zhou Z. Z.; Liu S. J.; Tao Y. H.; Wang F. S.; Wang X. H. On-demand transformation of carbon dioxide into polymers enabled by a comb-shaped metallic oligomer catalyst. ACS Catal., 2022, 12, 481-490. doi:10.1021/acscatal.1c04431http://dx.doi.org/10.1021/acscatal.1c04431
Zhang R. Y.; Kuang Q. X.; Cao H.; Liu S. J.; Chen X. S.; Wang X. H.; Wang F. S. Unity makes strength: constructing polymeric catalyst for selective synthesis of CO2/epoxide copolymer. CCS Chem., 2022, DOI:10.31635/ccschem.022.202201952.http://dx.doi.org/10.31635/ccschem.022.202201952.
曹瀚, 巩如楠, 周振震, 王献红, 王佛松. 功能化二氧化碳基多元醇的精准合成. 高分子学报, 2021, 52(8), 1006-1014. doi:10.11777/j.issn1000-3304.2021.21056http://dx.doi.org/10.11777/j.issn1000-3304.2021.21056
Zhuo C. W.; Qin Y. S.; Wang X. H.; Wang F. S. Temperature-responsive catalyst for the coupling reaction of carbon dioxide and propylene oxide. Chin. J. Chem., 2018, 36, 299-305. doi:10.1002/cjoc.201800019http://dx.doi.org/10.1002/cjoc.201800019
Li Z. F.; Qin Y. S.; Zhao X. J.; Wang F. S.; Zhang S. B.; Wang X. H. Synthesis and stabilization of high-molecular-weight poly(propylene carbonate) from ZnCo-based double metal cyanide catalyst. Eur. Polym. J., 2011, 47, 2152-2157. doi:10.1016/j.eurpolymj.2011.08.004http://dx.doi.org/10.1016/j.eurpolymj.2011.08.004
0
Views
67
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution