浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 中科院生态环境高分子材料重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
Xuan Pang, E-mail: xpang@ciac.ac.cn
Xue-si Chen, E-mail: xschen@ciac.ac.cn
Published:20 April 2023,
Published Online:10 January 2023,
Received:19 October 2022,
Accepted:23 November 2022
扫 描 看 全 文
黄月洲,胡晨阳,王天昶等.硫代羧基环内酸酐与丙交酯的可切换共聚[J].高分子学报,2023,54(04):467-475.
Huang Yue-zhou,Hu Chen-yang,Wang Tian-chang,et al.Switchable Polymerization of Sulfur-containing Carboxyanhydride and Lactide[J].ACTA POLYMERICA SINICA,2023,54(04):467-475.
黄月洲,胡晨阳,王天昶等.硫代羧基环内酸酐与丙交酯的可切换共聚[J].高分子学报,2023,54(04):467-475. DOI: 10.11777/j.issn1000-3304.2022.22355.
Huang Yue-zhou,Hu Chen-yang,Wang Tian-chang,et al.Switchable Polymerization of Sulfur-containing Carboxyanhydride and Lactide[J].ACTA POLYMERICA SINICA,2023,54(04):467-475. DOI: 10.11777/j.issn1000-3304.2022.22355.
硫代聚酯是一种兼具聚酯材料的优点(降解性、生物相容性和热稳定性等)与含硫聚合物材料的优点 (光学性能和金属吸附性能等)的新型材料. 本文合成了含硫单体硫代羧基环内酸酐(MDTD),以希夫碱锰(Salen-Mn)为催化剂,在低投料比(50:1)较低温度(60 ℃)的情况下,抑制了小分子副产物的生成,实现了MDTD的活性聚合. 在此基础上,利用Salen-Mn可逆插入氧硫化碳(COS)的性质,设计开发出了一条新的硫代单体控制的自切换共聚路线. 通过在丙交酯(LA)聚合的过程中添加MDTD单体以及改变聚合反应气氛的手段实现了MDTD与LA的可切换共聚,并应用核磁、凝胶渗透色谱等方法跟踪反应进程表征反应产物,证实了多嵌段聚酯/聚硫酯(p(LA-
b
-MDTD-
b
-LA))的生成. 通过该方法最终得到了五嵌段的聚酯/聚硫酯(
M
n
=12.4 kg/mol,
Đ
=1.20)的嵌段共聚物. 该方法可以通过改变相应的单体结构合成相应的多嵌段聚酯/聚硫酯,为改善含硫聚酯的物理化学性质打下了基础.
Thiopolyesters is a new type of materials that combine the advantages of polyester materials (degradability
biocompatibility
thermal stability
etc
.) and sulfur-containing polymer materials (optical properties
metal adsorption properties
etc
.). In this study
the sulfur-containing carboxyanhydride (5-methyl dithiolane-2
4-dione
MDTD) was synthesized and polymerized by Schiff base-manganese (Salen-Mn). The formation of small-molecule by-products was inhibited and the active homopolymerization of MDTD was realized under the condition of low feed ratio (50:1) using 4-dimethylaminopyridine (DMAP) as cocatalyst
at lower temperature (60 ℃). Based on the reversible insertion of carbon oxysulfide (COS) by Salen-Mn
a new monomer controlled self-switchable polymerization route was developed by sequentially addition of the MDTD and the removal of COS. Chemoselective ring opening between MDTD and lactide (LA) was explored with DMAP as cocatalyst. The monomer controlled switchable copolymerization reaction process and the formation of polyblock polyester/polythioester (p(LA-
b
-MDTD-
b
-LA)) were confirmed by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). Eventually
a two-step switchable copolymerization was realized by sequential addition of MDTD and degassing
a five-block polyester/polythioester (
M
n
= 12.4 kg/mol
Đ
=1.20) copolymer was obtained. This emerging polymerization strategy could synthesize the corresponding multi-block polyester/polythioester by changing the structure of the Sulfur-containing carboxyanhydride monomer
which lays a foundation for improving physical and chemcial properties of the thiopolyesters.
2
可切换共聚聚硫酯硫代羧基环内酸酐开环聚合多嵌段共聚物
Switchable copolymerizationSulfur-containing carboxyanhydridePolythiosetersRing-opening copolymerization (ROCOP)Multi-block copolymer
Walsh C. T. The Chemical Biology of Sulfur. Cambridge: RSC Publishing. 2020. 5-22. doi:10.1039/9781839161841http://dx.doi.org/10.1039/9781839161841
Wang M.; Jiang X. Sulfur-sulfur bond construction. Topics Curr. Chem., 2018, 376, 14. doi:10.1007/s41061-018-0192-5http://dx.doi.org/10.1007/s41061-018-0192-5
Lee T.; Dirlam P. T.; Njardarson J. T.; Glass R. S.; Pyun J. Polymerizations with elemental sulfur: from petroleum refining to polymeric materials. J. Am. Chem. Soc., 2022, 144(1), 5-22. doi:10.1021/jacs.1c09329http://dx.doi.org/10.1021/jacs.1c09329
Xiao X.; Xue J.; Jiang X. Polysulfurating reagent design for unsymmetrical polysulfide construction. Nat. Commun., 2018, 9(1), 1-9. doi:10.1038/s41467-018-04306-5http://dx.doi.org/10.1038/s41467-018-04306-5
Mutlu H.; Ceper E. B.; Li X.; Yang J.; Dong W.; Ozmen M. M.; Theato P. Sulfur chemistry in polymer and materials science. Macromol. Rapid Commun., 2019, 40(1), 1800650. doi:10.1002/marc.201800650http://dx.doi.org/10.1002/marc.201800650
Lowe A. B.; Hoyle C. E.; Bowman C. N. Thiol-yne click chemistry: a powerful and versatile methodology for materials synthesis. J. Mater. Chem., 2010, 20(23), 4745-4750. doi:10.1039/b917102ahttp://dx.doi.org/10.1039/b917102a
朱忆诺, 陶友华. 基于氨基酸基交硫酯单体的闭环回收高分子. 高分子学报, 2022, 53(9), 1023-1031. doi:10.11777/j.issn1000-3304.2022.22102http://dx.doi.org/10.11777/j.issn1000-3304.2022.22102
Zhang C. J.; Zhu T. C.; Cao X. H.; Hong X.; Zhang X. H. Poly(thioether)s from closed-system one-pot reaction of carbonyl sulfide and epoxides by organic bases. J. Am. Chem. Soc., 2019, 141(13), 5490-5496. doi:10.1021/jacs.9b00544http://dx.doi.org/10.1021/jacs.9b00544
王莹, 杨嘉良, 张成建, 张兴宏. 有机催化含硫一碳单体与环氧化物共聚. 高分子学报, 2020, 51(10), 1092-1103. doi:10.11777/j.issn1000-3304.2020.20096http://dx.doi.org/10.11777/j.issn1000-3304.2020.20096
Fairbanks B. D.; Singh S. P.; Bowman C. N.; Anseth K. S. Photodegradable, photoadaptable hydrogels via radical-mediated disulfide fragmentation reaction. Macromolecules, 2011, 44(8), 2444-2450. doi:10.1021/ma200202whttp://dx.doi.org/10.1021/ma200202w
Kricheldorf H. R.; Schwarz, G. Poly(thioester)s. J. Macromol. Sci. A, 2007, 44(6), 625-649. doi:10.1080/10601320701285094http://dx.doi.org/10.1080/10601320701285094
Yue T. J.; Ren W. M.; Chen L.; Gu G. G.; Liu Y.; Lu X. B. Synthesis of chiral sulfur-containing polymers: asymmetric copolymerization of meso‐epoxides and carbonyl sulfide. Angew. Chem. Int. Ed., 2018, 130(39), 12852-12856. doi:10.1002/ange.201805200http://dx.doi.org/10.1002/ange.201805200
Datta P. P.; Kiesewetter M. K. Controlled organocatalytic ring-opening polymerization of epsilon-thionocaprolactone. Macromolecules, 2016, 49(3), 774-780. doi:10.1021/acs.macromol.6b00136http://dx.doi.org/10.1021/acs.macromol.6b00136
Chen X. L.; Wang B.; Song D. P.; Pan L.; Li Y. S. One-step synthesis of sequence-controlled polyester-block-poly(ester-alt-thioester) by chemoselective multicomponent polymerization. Macromolecules, 2022, 55(4), 1153-1164. doi:10.1021/acs.macromol.1c02303http://dx.doi.org/10.1021/acs.macromol.1c02303
Teator A. J.; Lastovickova D. N.; Bielawski C. W. Switchable polymerization catalysts. Chem. Rev., 2016, 116(4), 1969-1992. doi:10.1021/acs.chemrev.5b00426http://dx.doi.org/10.1021/acs.chemrev.5b00426
Coulembier O.; Dove A. P.; Pratt R. C.; Sentman A. C.; Culkin D. A.; Mespouille L.; Dubois P.; Waymouth R. M.; Hedrick J. L. Latent, thermally activated organic catalysts for the on‐demand living polymerization of lactide. Angew. Chem. Int. Ed., 2005, 44(31), 4964-4968. doi:10.1002/anie.200500723http://dx.doi.org/10.1002/anie.200500723
Hu C.; Duan R.; Yang S.; Pang X.; Chen X. CO2 catalysiscontrolled: switchable homopolymerization and copolymerization. Macromolecules, 2018, 51(12), 4699-4704. doi:10.1021/acs.macromol.8b00696http://dx.doi.org/10.1021/acs.macromol.8b00696
Osaki M.; Takashima Y.; Yamaguchi H.; Harada A. Switching of polymerization activity of cinnamoyl-α-cyclodextrin. Org. Biomol. Chem., 2009, 7(8), 1646-1651. doi:10.1039/b818241hhttp://dx.doi.org/10.1039/b818241h
Wang X.; Thevenon A.; Brosmer J. L.; Yu I.; Khan S. I.; Mehrkhodavandi P.; Diaconescu P. L. Redox control of group 4 metal ring-opening polymerization activity toward L-lactide and ε-caprolactone. J. Am. Chem. Soc., 2014, 136(32), 11264-11267. doi:10.1021/ja505883uhttp://dx.doi.org/10.1021/ja505883u
Huang Y.; Hu C.; Pang X.; Zhou Y.; Duan R.; Sun Z.; Chen X. Electrochemically controlled switchable copolymerization of lactide, dioxidecarbon, and epoxides. Angew. Chem. Int. Ed., 2022, 61(20), 202202660. doi:10.1002/anie.202202660http://dx.doi.org/10.1002/anie.202202660
Biernesser A. B.; Delle Chiaie K. R.; Curley J. B.; Byers J. A. Block copolymerization of lactide and an epoxide facilitated by a redox switchable iron‐based catalyst. Angew. Chem. Int. Ed., 2016, 55(17), 5251-5254. doi:10.1002/anie.201511793http://dx.doi.org/10.1002/anie.201511793
Yoon H. J.; Kuwabara J.; Kim J. H.; Mirkin C. A. Allosteric supramolecular triple-layer catalysts. Science, 2010, 330(6000), 66-69. doi:10.1126/science.1193928http://dx.doi.org/10.1126/science.1193928
Raman S. K.; Raja R.; Arnold P. L.; Davidson M. G.; Williams C. K. notWaste, notwant: CO2 (re)cycling into block polymers. Chem. Commun., 2019, 55(51), 7315-7318. doi:10.1039/c9cc02459jhttp://dx.doi.org/10.1039/c9cc02459j
Stoesser T.; Mulryan D.; Williams C. K. Switch catalysis to deliver multi-block polyesters from mixtures of propene oxide, lactide, and phthalic anhydride. Angew. Chem. Int. Ed., 2018, 57(51), 16893-16897. doi:10.1002/anie.201810245http://dx.doi.org/10.1002/anie.201810245
Stosser T.; Sulley G. S.; Gregory G. L.; Williams C. K. Easy access to oxygenated block polymers via switchable catalysis. Nat. Commun., 2019, 10, 2668. doi:10.1038/s41467-019-10481-whttp://dx.doi.org/10.1038/s41467-019-10481-w
Huang Y.; Hu C.; Zhou Y.; Duan R.; Sun Z.; Wan P.; Xiao C.; Pang X.; Chen X. Monomer controlled switchable copolymerization: a feasible route for the functionalization of poly(lactide). Angew. Chem. Int. Ed., 2021, 60(17), 9274-9278. doi:10.1002/anie.202017088http://dx.doi.org/10.1002/anie.202017088
Kricheldorf H. R.; Lomadze N.; Schwarz G. Cyclic poly(thioglycolide) and poly(D,L-thiolactide) by zwitterionic polymerization of dithiolane-2,4-diones. Macromolecules, 2007, 40(14), 4859-4864. doi:10.1021/ma0705467http://dx.doi.org/10.1021/ma0705467
Yang Z. J.; Hu C. Y.; Duan R. L.; Sun Z. Q.; Zhang H.; Pang X.; Li L. L. Salen-manganese complexes and their application in the ring-opening polymerization of lactide and epsilon-caprolactone. Asian J. Org. Chem., 2019, 8(3), 376-384. doi:10.1002/ajoc.201800695http://dx.doi.org/10.1002/ajoc.201800695
Wang R. B.; Zhang J. W.; Yin Q.; Xu Y. X.; Cheng J. J.; Tong R. Controlled ring-opening polymerization of O-carboxyanhydrides using a beta-diiminate zinc catalyst. Angew. Chem. Int. Ed., 2016, 55(42), 13010-13014. doi:10.1002/anie.201605508http://dx.doi.org/10.1002/anie.201605508
Hayman G. D.; Hodge J.; Howard B. J.; Muenter J. S.; Dyke T. R. Infrared absorption and microwave-infrared double resonance studies of Ne·OCS molecular beams. J. Chem. Phys., 1987, 86(4), 1670-1678. ArticleResearch. doi:10.1063/1.452758http://dx.doi.org/10.1063/1.452758
0
Views
93
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution