浏览全部资源
扫码关注微信
1.南昌虚拟现实研究院股份有限公司 国家虚拟现实创新中心 南昌 301108
2.华中科技大学化学与化工学院 材料成形与模具技术国家重点实验室 武汉 430074
Published:20 April 2023,
Published Online:15 December 2022,
Received:21 October 2022,
Revised:17 November 2022,
扫 描 看 全 文
倪名立,杨松,周兴平等.面向VR/AR应用的全息高分子材料[J].高分子学报,2023,54(04):418-431.
Ni Ming-li,Yang Song,Zhou Xing-ping,et al.Holographic Polymer Materials for VR/AR Applications[J].ACTA POLYMERICA SINICA,2023,54(04):418-431.
倪名立,杨松,周兴平等.面向VR/AR应用的全息高分子材料[J].高分子学报,2023,54(04):418-431. DOI: 10.11777/j.issn1000-3304.2022.22358.
Ni Ming-li,Yang Song,Zhou Xing-ping,et al.Holographic Polymer Materials for VR/AR Applications[J].ACTA POLYMERICA SINICA,2023,54(04):418-431. DOI: 10.11777/j.issn1000-3304.2022.22358.
虚拟现实(VR)/增强现实(AR)是新兴的人-机交互显示技术,其光学元件的集成化、轻量化与定制化是先进VR/AR技术的必然要求,全息高分子材料是关键. 本文介绍了VR/AR近眼显示系统及重要参数,回顾了全息高分子材料在VR/AR显示中的重要应用,讨论了全息高分子材料的性能与VR/AR显示效果的关系,重点介绍了全息高分子材料的折射率调制度、光散射损失和体积收缩率的调控策略,最后指出了现有全息高分子材料在先进VR/AR应用中的不足,并展望了未来发展方向.
As emerging high-tech and intelligent display technologies allowing for real-time human-computer interactions
virtual reality (VR) and augmented reality (AR) can provide completely immersive virtual scenes to users or offer users the perfectly merged scenes of real world with virtual objects. Their unique capabilities are primarily ascribed to the predesigned optical elements in the VR/AR setups. Since multifunction integration
weight reduction and customization of VR/AR setups are in urgent needs for developing advanced VR/AR technologies
it is critical to develop novel optical elements using advanced materials. To this end
holographic polymer materials can play a central role. In this feature article
the VR/AR near eye display systems and key parameters are firstly overviewed
followed by the discussion of the application of holographic polymer materials in VR/AR display. Subsequently
the relationship of VR/AR performances to the properties of holographic polymer materials is discussed
and strategies to improve the refractive index modulation
decrease the scattering loss and volume shrinkage of holographic polymer materials are highlighted. Finally
the shortage and future directions of current holographic polymer materials are pointed out
respectively
for advancing the VR/AR technologies.
虚拟现实增强现实全息光学元件全息高分子材料
Virtual realityAugmented realityHolographic optical elementsHolographic polymer materials
Joo W. J.; Brongersma M. L. Creating the ultimate virtual reality display. Science, 2022, 377(6613), 1376-1378. doi:10.1126/science.abq7011http://dx.doi.org/10.1126/science.abq7011
Pyun K. R.; Rogers J. A.; Ko S. H. Materials and devices for immersive virtual reality. Nat. Rev. Mater., 2022, 7(11), 841-843. doi:10.1038/s41578-022-00501-5http://dx.doi.org/10.1038/s41578-022-00501-5
Skirnewskaja J.; Wilkinson T. D. Automotive holographic head-up displays. Adv. Mater., 2022, 34(19), e2110463. doi:10.1002/adma.202110463http://dx.doi.org/10.1002/adma.202110463
Xiong J. H.; Hsiang E. L.; He Z. Q.; Zhan T.; Wu S. T. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci. Appl., 2021, 10, 216. doi:10.1038/s41377-021-00658-8http://dx.doi.org/10.1038/s41377-021-00658-8
Xiong J. H.; Yin K.; Li K.; Wu S. T. Holographic optical elements for augmented reality: principles, present status, and future perspectives. Adv. Photonics Res., 2021, 2(1), 2000049. doi:10.1002/adpr.202000049http://dx.doi.org/10.1002/adpr.202000049
Yin K.; Hsiang E. L.; Zou J. Y.; Li Y.; Yang Z. Y.; Yang Q.; Lai P. C.; Lin C. L.; Wu S. T. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications. Light. Sci. Appl., 2022, 11, 161. doi:10.1038/s41377-022-00851-3http://dx.doi.org/10.1038/s41377-022-00851-3
中国互联网发展报告(2021). 北京: 中国互联网协会. 2021.
Roque, A. US Army and Microsoft working to ‘mature’ IVAS technology, delays operational testing and fielding [EB/OL], http://www.janes.com/defence-news/news-detail/us-army-and-microsoft-working-to-mature-ivas-technology-delays-operational-testing-and-fielding. 2021.10.14/2022.10.17.
Jeong J.; Lee J.; Yoo C.; Moon S.; Lee B.; Lee B. Holographically customized optical combiner for eye-box extended near-eye display. Opt. Express, 2019, 27(26), 38006-38018. doi:10.1364/oe.27.038006http://dx.doi.org/10.1364/oe.27.038006
Jang C.; Mercier O.; Bang K.; Li G.; Zhao Y.; Lanman D. Design and fabrication of freeform holographic optical elements. ACM Trans. Graph., 2020, 39(6), 1-15. doi:10.1145/3414685.3417762http://dx.doi.org/10.1145/3414685.3417762
Wilm T.; Hofmann J.; Fiess R.; Höckh,, S.; Stork, W. Immersion-based holographic wave front printer setup for volume holographic retinal projection elements. Proc. SPIE, 2021, 11774, 117740F. doi:10.1117/12.2589102http://dx.doi.org/10.1117/12.2589102
解孝林, 周锦伦, 彭海炎, 张云, 李德群, 周华民, 倪名立, 周兴平. 一种全息波前打印系统及方法. 中国发明专利, G03H1/04, CN114859679A. 2022-08-05.
王涌天, 程德文, 许晨. 虚拟现实光学显示技术. 中国科学: 信息科学, 2016, 46(12), 1694-1710.
Bang K.; Jo Y.; Chae M.; Lee B. Lenslet VR: Thin, flat and wide-FOV virtual reality display using Fresnel lens and Lenslet array. IEEE Trans. Vis. Comput. Graph., 2021, 27(5), 2545-2554. doi:10.1109/tvcg.2021.3067758http://dx.doi.org/10.1109/tvcg.2021.3067758
GB/T38259-2019. 信息技术 虚拟现实头戴式显示设备通用规范[S]. 北京: 中国标准出版社. 2019. doi:10.12173/j.issn.1004-5511.202111004http://dx.doi.org/10.12173/j.issn.1004-5511.202111004
Cakmakci O.; Qin Y.; Bosel P.; Wetzstein G. Holographic pancake optics for thin and lightweight optical see-through augmented reality. Opt. Express, 2021, 29(22), 35206-35215. doi:10.1364/oe.439585http://dx.doi.org/10.1364/oe.439585
Maimone A.; Wang J. R. Holographic optics for thin and lightweight virtual reality. ACM Trans. Graph., 2020, 39(4), 67. doi:10.1145/3386569.3392416http://dx.doi.org/10.1145/3386569.3392416
Kress B. C.; Pace M. Holographic optics in planar optical systems for next generation small form factor mixed reality headsets. Light Adv. Manuf., 2022, 3, 42. doi:10.37188/lam.2022.042http://dx.doi.org/10.37188/lam.2022.042
姜玉婷, 张毅, 胡跃强, 郭晓明, 宋强, 段辉高. 增强现实近眼显示设备中光波导元件的研究进展. 光学精密工程, 2021, 29(1): 28-44. doi:10.37188/OPE.20212901.0028http://dx.doi.org/10.37188/OPE.20212901.0028
Wakunami K.; Hsieh P. Y.; Oi R.; Senoh T.; Sasaki H.; Ichihashi Y.; Okui M.; Huang Y. P.; Yamamoto K. Projection-type see-through holographic three-dimensional display. Nat. Commun., 2016, 7, 12954. doi:10.1038/ncomms12954http://dx.doi.org/10.1038/ncomms12954
Jeong J.; Lee C. K.; Lee B.; Lee S.; Moon S.; Sung G.; Lee H. S.; Lee B. Holographically printed freeform mirror array for augmented reality near-eye display. IEEE Photonics Technol. Lett., 2020, 32(16), 991-994. doi:10.1109/lpt.2020.3008215http://dx.doi.org/10.1109/lpt.2020.3008215
Shen Z. W.; Zhang Y. N.; Liu A.; Weng Y. S.; Li X. H. Volume holographic waveguide display with large field of view using a Au-NPs dispersed acrylate-based photopolymer. Opt. Mater. Express, 2020, 10(2), 312-322. doi:10.1364/ome.380826http://dx.doi.org/10.1364/ome.380826
Kogelnik H. Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J., 1969, 48(9), 2909-2947. doi:10.1002/j.1538-7305.1969.tb01198.xhttp://dx.doi.org/10.1002/j.1538-7305.1969.tb01198.x
Shen Z. W.; Weng Y. S.; Zhang Y. N.; Wang C.; Liu A.; Li X. H. Holographic recording performance of acrylate-based photopolymer under different preparation conditions for waveguide display. Polymers, 2021, 13(6), 936. doi:10.3390/POLYM13060936http://dx.doi.org/10.3390/POLYM13060936
Tabar R. J.; Murray C. T.; Stein R. S. The effect of particle size on the haze of polymer films. J. Polym. Sci. Polym. Phys. Ed., 1983, 21(5), 831-833. doi:10.1002/pol.1983.180210512http://dx.doi.org/10.1002/pol.1983.180210512
Bruder F. K.; Frank J.; Hansen S.; Lorenz A.; Manecke C.; Meisenheimer R.; Mills J.; Pitzer L.; Pochorovski I.; Roelle T.; Wewer B. Demonstrations of Bayfol HX vHOE's in see-through display applications. Proc. SPIE, 2022, 11931, 119310B. doi:10.1117/12.2614633http://dx.doi.org/10.1117/12.2614633
Lee S.; Jeong Y. C.; Heo Y.; Kim S. I.; Choi Y. S.; Park J. K. Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage. J. Mater. Chem., 2009, 19(8), 1105-1114. doi:10.1039/b815743jhttp://dx.doi.org/10.1039/b815743j
Moothanchery M.; Naydenova I.; Toal V. Study of the shrinkage caused by holographic grating formation in acrylamide based photopolymer film. Opt. Express, 2011, 19(14), 13395-13404. doi:10.1364/oe.19.013395http://dx.doi.org/10.1364/oe.19.013395
Jang C.; Bang K.; Li G.; Lee B. Holographic near-eye display with expanded eye-box. ACM Trans. Graph., 2018, 37(6), 195. doi:10.1145/3272127.3275069http://dx.doi.org/10.1145/3272127.3275069
Chang C. L.; Bang K.; Wetzstein G.; Lee B.; Gao L. Toward the next-generation VR/AR optics: A review of holographic near-eye displays from a human-centric perspective. Optica, 2020, 7(11), 1563-1578. doi:10.1364/OPTICA.406004http://dx.doi.org/10.1364/OPTICA.406004
Park J. H.; Lee B. Holographic techniques for augmented reality and virtual reality near-eye displays. Light Adv. Manuf., 2022, 3(1), 9. doi:10.37188/lam.2022.009http://dx.doi.org/10.37188/lam.2022.009
Sando Y.; Satoh K.; Barada D.; Yatagai T. Holographic augmented reality display with conical holographic optical element for wide viewing zone. Light Adv. Manuf., 2022, 3(1), 12. doi:10.37188/lam.2022.012http://dx.doi.org/10.37188/lam.2022.012
Close D. H.; Jacobson A. D.; Margerum J. D.; Brault R. G.; McClung F. J. Hologram recording on photopolymer materials. Appl. Phys. Lett., 1969, 14(5), 159-160. doi:10.1063/1.1652756http://dx.doi.org/10.1063/1.1652756
Haugh E. F. Hologram recording in photopolymerizable layers. US Patent, G03C5/04, 3658526A. 1972-04-24.
Smothers W.; Monroe B.; Weber A.; Keys D. Photopolymers for holography. Proc. SPIE, 1990, 1212, 20-29. doi:10.1117/12.17963http://dx.doi.org/10.1117/12.17963
Dhar L.; Hale A.; Katz H. E.; Schilling M. L.; Schnoes M. G.; Schilling F. C. Recording media that exhibit high dynamic range for digital holographic data storage. Opt. Lett., 1999, 24(7), 487-489. doi:10.1364/ol.24.000487http://dx.doi.org/10.1364/ol.24.000487
郭红喜, 姚铭, 赵晔, 彭海炎, 周兴平, 解孝林. 全息高分子材料的正交反应设计. 高分子学报, 2022, 53(7), 722-736. doi:10.11777/j.issn1000-3304.2022.22053http://dx.doi.org/10.11777/j.issn1000-3304.2022.22053
Jurbergs D.; Bruder F. K.; Deuber F.; Fäcke T.; Hagen R.; Hönel D.; Rölle T.; Weiser M. S.; Volkov A. New recording materials for the holographic industry. Proc. SPIE, 2009, 7233, 72330K. doi:10.1117/12.809579http://dx.doi.org/10.1117/12.809579
Bruder F. K.; Fäcke T.; Rölle T. The chemistry and physics of Bayfol® HX film holographic photopolymer. Polymers, 2017, 9(12), 472. doi:10.3390/polym9100472http://dx.doi.org/10.3390/polym9100472
Sutherland R. L.; Natarajan L. V.; Tondiglia V. P.; Bunning T. J. Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes. Chem. Mater., 1993, 5(10), 1533-1538. doi:10.1021/cm00034a025http://dx.doi.org/10.1021/cm00034a025
Bunning T. J.; Natarajan L. V.; Tondiglia V. P.; Sutherland R. L. Holographic polymer-dispersed liquid crystals (H-PDLCs). Annu. Rev. Mater. Sci., 2000, 30, 83-115. doi:10.1146/annurev.matsci.30.1.83http://dx.doi.org/10.1146/annurev.matsci.30.1.83
Lee K. M.; Tondiglia V. P.; Godman N. P.; White T. J.; Bunning T. J.; McConney M. E. Reconfigurable reflective colors in holographically patterned liquid crystal gels. ACS Photonics, 2020, 7(8), 1978-1982. doi:10.1021/acsphotonics.0c00832http://dx.doi.org/10.1021/acsphotonics.0c00832
王丹, 彭海炎, 周兴平, 解孝林. 全息高分子/液晶复合材料的研究进展. 应用化学, 2021, 38(10), 1268-1298. doi:10.19894/j.issn.1000-0518.210385http://dx.doi.org/10.19894/j.issn.1000-0518.210385
Vaia R. A.; Dennis C. L.; Natarajan L. V.; Tondiglia V. P.; Tomlin D. W.; Bunning T. J. One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique. Adv. Mater., 2001, 13(20), 1570. doi:10.1002/1521-4095(200110)13:20<1570::aid-adma1570>3.0.co;2-xhttp://dx.doi.org/10.1002/1521-4095(200110)13:20<1570::aid-adma1570>3.0.co;2-x
Suzuki N.; Tomita Y.; Kojima T. Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films. Appl. Phys. Lett., 2002, 81(22), 4121-4123. doi:10.1063/1.1525391http://dx.doi.org/10.1063/1.1525391
Sánchez C.; Escuti M. J.; van Heesch C.; Bastiaansen C. W. M.; Broer D. J.; Loos J.; Nussbaumer R. TiO2 nanoparticle-photopolymer composites for volume holographic recording. Adv. Funct. Mater., 2005, 15(10), 1623-1629. doi:10.1002/adfm.200500095http://dx.doi.org/10.1002/adfm.200500095
Ni M. L.; Peng H. Y.; Liao Y. G.; Yang Z. F.; Xue Z. G.; Xie X. L. 3D image storage in photopolymer/ZnS nanocomposites tailored by "photoinitibitor". Macromolecules, 2015, 48(9), 2958-2966. doi:10.1021/acs.macromol.5b00261http://dx.doi.org/10.1021/acs.macromol.5b00261
Tomita Y.; Urano H.; Fukamizu T. A.; Kametani Y.; Nishimura N.; Odoi K. Nanoparticle-polymer composite volume holographic gratings dispersed with ultrahigh-refractive-index hyperbranched polymer as organic nanoparticles. Opt. Lett., 2016, 41(6), 1281-1284. doi:10.1364/OL.41.001281http://dx.doi.org/10.1364/OL.41.001281
Tomita Y.; Kageyama A.; Iso Y.; Umemoto K.; Kume A.; Liu M.; Pruner C.; Jenke T.; Roccia S.; Geltenbort P.; Fally M.; Klepp J. Fabrication of nanodiamond-dispersed composite holographic gratings and their light and slow-neutron diffraction properties. Phys. Rev. Appl., 2020, 14(4), 044056. doi:10.1103/physrevapplied.14.044056http://dx.doi.org/10.1103/physrevapplied.14.044056
Tomita Y.; Aoi T.; Hasegawa S.; Xia F.; Wang Y. H.; Oshima J. Very high contrast volume holographic gratings recorded in photopolymerizable nanocomposite materials. Opt. Express, 2020, 28(19), 28366-28382. doi:10.1364/oe.400092http://dx.doi.org/10.1364/oe.400092
Hu P.; Chen Y. X.; Li J. H.; Wang J. Y.; Liu J.; Wu T. M.; Tan X. D. Impact of fullerene on the holographic properties of PQ/PMMA photopolymer. Compos. Sci. Technol., 2022, 221, 109335. doi:10.1016/j.compscitech.2022.109335http://dx.doi.org/10.1016/j.compscitech.2022.109335
Ni M. L.; Chen G. N.; Wang Y.; Peng H. Y.; Liao Y. G.; Xie X. L. Holographic polymer nanocomposites with ordered structures and improved electro-optical performance by doping POSS. Compos. B Eng., 2019, 174, 107045. doi:10.1016/j.compositesb.2019.107045http://dx.doi.org/10.1016/j.compositesb.2019.107045
Zhang X. M.; Yao W. J.; Zhou X. P.; Wu W.; Liu Q. K.; Peng H. Y.; Zhu J. T.; Smalyukh I. I.; Xie X. L. Holographic polymer nanocomposites with simultaneously boosted diffraction efficiency and upconversion photoluminescence. Compos. Sci. Technol., 2019, 181, 107705. doi:10.1016/j.compscitech.2019.107705http://dx.doi.org/10.1016/j.compscitech.2019.107705
王艺璇, 郝兴天, 彭海炎, 周兴平, 解孝林. 全息高分子纳米复合材料研究进展. 科学通报, 2022, 67(11), 1023-1035.
Peng H. Y.; Yu L.; Chen G. N.; Xue Z. G.; Liao Y. G.; Zhu J. T.; Xie X. L.; Smalyukh I. I.; Wei Y. Liquid crystalline nanocolloids for the storage of electro-optic responsive images. ACS Appl. Mater. Interfaces, 2019, 11(8), 8612-8624. doi:10.1021/acsami.8b22636http://dx.doi.org/10.1021/acsami.8b22636
Hu Y. X.; Hao X. T.; Xu L.; Xie X. L.; Xiong B. J.; Hu Z. B.; Sun H. T.; Yin G. Q.; Li X. P.; Peng H. Y.; Yang H. B. Construction of supramolecular liquid-crystalline metallacycles for holographic storage of colored images. J. Am. Chem. Soc., 2020, 142(13), 6285-6294. doi:10.1021/jacs.0c00698http://dx.doi.org/10.1021/jacs.0c00698
Ni M. L.; Luo W.; Wang D.; Zhang Y.; Peng H. Y.; Zhou X. P.; Xie X. L. Orthogonal reconstruction of upconversion and holographic images for anticounterfeiting based on energy transfer. ACS Appl. Mater. Interfaces, 2021, 13(16), 19159-19167. doi:10.1021/acsami.1c02561http://dx.doi.org/10.1021/acsami.1c02561
Luo W.; Ni M. L.; Zhou X. P.; Peng H. Y.; Xie X. L. Holographic polymer nanocomposites with both high diffraction efficiency and bright upconversion emission by incorporating liquid crystals and core-shell structured upconversion nanoparticles. Compos. B Eng., 2020, 199, 108290. doi:10.1016/j.compositesb.2020.108290http://dx.doi.org/10.1016/j.compositesb.2020.108290
Hu Y. F.; Mavila S.; Podgórski M.; Kowalski J. E.; McLeod R. R.; Bowman C. N. Manipulating the relative rates of reaction and diffusion in a holographic photopolymer based on thiol-ene chemistry. Macromolecules, 2022, 55(5), 1822-1833. doi:10.1021/acs.macromol.1c02528http://dx.doi.org/10.1021/acs.macromol.1c02528
Natarajan L. V.; Brown D. P.; Wofford J. M.; Tondiglia V. P.; Sutherland R. L.; Lloyd P. F.; Bunning T. J. Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization. Polymer, 2006, 47(12), 4411-4420. doi:10.1016/j.polymer.2006.04.033http://dx.doi.org/10.1016/j.polymer.2006.04.033
Peng H. Y.; Bi S. G.; Ni M. L.; Xie X. L.; Liao Y. G.; Zhou X. P.; Xue Z. G.; Zhu J. T.; Wei Y.; Bowman C. N.; Mai Y. W. Monochromatic visible light "photoinitibitor": Janus-faced initiation and inhibition for storage of colored 3D images. J. Am. Chem. Soc., 2014, 136(25), 8855-8858. doi:10.1021/ja502366rhttp://dx.doi.org/10.1021/ja502366r
Peng H. Y.; Chen G. N.; Ni M. L.; Yan Y.; Zhuang J. Q.; Roy V. A. L.; Li R. K. Y.; Xie X. L. Classical photopolymerization kinetics, exceptional gelation, and improved diffraction efficiency and driving voltage in scaffolding morphological H-PDLCs afforded using a photoinitibitor. Polym. Chem., 2015, 6(48), 8259-8269. doi:10.1039/c5py01414jhttp://dx.doi.org/10.1039/c5py01414j
Chen G. N.; Ni M. L.; Peng H. Y.; Huang F. H.; Liao Y. G.; Wang M. K.; Zhu J. T.; Roy V. A. L.; Xie X. L. Photoinitiation and inhibition under monochromatic green light for storage of colored 3D images in holographic polymer-dispersed liquid crystals. ACS Appl. Mater. Interfaces, 2017, 9(2), 1810-1819. doi:10.1021/acsami.6b13129http://dx.doi.org/10.1021/acsami.6b13129
Zhao X. Y.; Sun S. S.; Zhao Y.; Liao R. Z.; Li M. D.; Liao Y. G.; Peng H. Y.; Xie X. L. Effect of ketyl radical on the structure and performance of holographic polymer/liquid-crystal composites. Sci. China Mater., 2019, 62(12), 1921-1933. doi:10.1007/s40843-019-9580-yhttp://dx.doi.org/10.1007/s40843-019-9580-y
Peng H. Y.; Nair D. P.; Kowalski B. A.; Xi W. X.; Gong T.; Wang C.; Cole M.; Cramer N. B.; Xie X. L.; McLeod R. R.; Bowman C. N. High performance graded rainbow holograms via two-stage sequential orthogonal thiol-click chemistry. Macromolecules, 2014, 47(7), 2306-2315. doi:10.1021/ma500167xhttp://dx.doi.org/10.1021/ma500167x
Peng H. Y.; Wang C.; Xi W. X.; Kowalski B. A.; Gong T.; Xie X. L.; Wang W. T.; Nair D. P.; McLeod R. R.; Bowman C. N. Facile image patterning via sequential thiol-Michael/thiol-yne click reactions. Chem. Mater., 2014, 26(23), 6819-6826. doi:10.1021/cm5034436http://dx.doi.org/10.1021/cm5034436
Moon K. R.; Bae S. Y.; Kim B. K. Electro-optical properties of low viscosity driven holographic polymer dispersed liquid crystals. Opt. Mater., 2015, 42, 160-166. doi:10.1016/j.optmat.2015.01.003http://dx.doi.org/10.1016/j.optmat.2015.01.003
Park J. H.; Kim B. K. High-performance holographic polymer-dispersed liquid crystals by incorporating hyperbranched polymers. J. Polym. Sci. A Polym. Chem., 2013, 51(5), 1255-1261. doi:10.1002/pola.26495http://dx.doi.org/10.1002/pola.26495
Peng H. Y.; Ni M. L.; Bi S. G.; Liao Y. G.; Xie X. L. Highly diffractive, reversibly fast responsive gratings formulated through holography. RSC Adv., 2014, 4(9), 4420-4426. doi:10.1039/c3ra45570jhttp://dx.doi.org/10.1039/c3ra45570j
Ni M. L.; Chen G. N.; Sun H. W.; Peng H. Y.; Yang Z. F.; Liao Y. G.; Ye Y. S.; Yang Y. K.; Xie X. L. Well-structured holographic polymer dispersed liquid crystals by employing acrylamide and doping ZnS nanoparticles. Mater. Chem. Front., 2017, 1(2), 294-303. doi:10.1039/c6qm00003ghttp://dx.doi.org/10.1039/c6qm00003g
White T. J.; Liechty W. B.; Natarajan L. V.; Tondiglia V. P.; Bunning T. J.; Guymon C. A. The influence of N-vinyl-2-pyrrolidinone in polymerization of holographic polymer dispersed liquid crystals (HPDLCs). Polymer, 2006, 47(7), 2289-2298. doi:10.1016/j.polymer.2006.01.030http://dx.doi.org/10.1016/j.polymer.2006.01.030
倪名立, 彭海炎, 解孝林. 全息聚合物分散液晶的结构调控与性能. 高分子学报, 2017, (10), 1557-1573. doi:10.11777/j.issn1000-3304.2017.17120http://dx.doi.org/10.11777/j.issn1000-3304.2017.17120
Suzuki N.; Tomita Y.; Ohmori K.; Hidaka M.; Chikama K. Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording. Opt. Express, 2006, 14(26), 12712-12719. doi:10.1364/oe.14.012712http://dx.doi.org/10.1364/oe.14.012712
Garnweitner G.; Goldenberg L. M.; Sakhno O. V.; Antonietti M.; Niederberger M.; Stumpe J. Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography. Small, 2007, 3(9), 1626-1632. doi:10.1002/smll.200700075http://dx.doi.org/10.1002/smll.200700075
Liu X. M.; Tomita Y.; Oshima J.; Chikama K.; Matsubara K.; Nakashima T.; Kawai T. Holographic assembly of semiconductor CdSe quantum dots in polymer for volume Bragg grating structures with diffraction efficiency near 100%. Appl. Phys. Lett., 2009, 95(26), 261109. doi:10.1063/1.3276914http://dx.doi.org/10.1063/1.3276914
Hata E. J.; Tomita Y. Stoichiometric thiol-to-ene ratio dependences of refractive index modulation and shrinkage of volume gratings recorded in photopolymerizable nanoparticle-polymer composites based onstep-growth polymerization. Opt. Mater. Express, 2011, 1(6), 1113-1120. doi:10.1364/ome.1.001113http://dx.doi.org/10.1364/ome.1.001113
Hata E. J.; Mitsube K.; Momose K.; Tomita Y. Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization. Opt. Mater. Express, 2011, 1(2), 207-222. doi:10.1364/ome.1.000207http://dx.doi.org/10.1364/ome.1.000207
Alim M. D.; Glugla D. J.; Mavila S.; Wang C.; Nystrom P. D.; Sullivan A. C.; McLeod R. R.; Bowman C. N. High dynamic range (δn) two-stage photopolymers via enhanced solubility of a high refractive index acrylate writing monomer. ACS Appl. Mater. Interfaces, 2018, 10(1), 1217-1224. doi:10.1021/acsami.7b15063http://dx.doi.org/10.1021/acsami.7b15063
Mavila S.; Sinha J.; Hu Y. F.; Podgórski M.; Shah P. K.; Bowman C. N. High refractive index photopolymers by thiol-yne "click" polymerization. ACS Appl. Mater. Interfaces, 2021, 13(13), 15647-15658. doi:10.1021/acsami.1c00831http://dx.doi.org/10.1021/acsami.1c00831
Roelle T.; Bruder F. K.; Faecke T.; Weiser M. S.; Diedrich C. Selection method for additives in photopolymers. US patent, G03H1/02, 2012/0237856A1. 2012-09-10.
del Monte F.; Martínez O.; Rodrigo J. A.; Calvo M. L.; Cheben P. A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species. Adv. Mater., 2006, 18(15), 2014-2017. doi:10.1002/adma.200502675http://dx.doi.org/10.1002/adma.200502675
Caputo R.; De Sio L.; Veltri A.; Umeton C.; Sukhov A. V. Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material. Opt. Lett., 2004, 29(11), 1261-1263. doi:10.1364/ol.29.001261http://dx.doi.org/10.1364/ol.29.001261
Kakiuchida H.; Kabata M.; Matsuyama T.; Ogiwara A. Thermoresponsive reflective scattering of meso-scale phase separation structures of uniaxially orientation-ordered liquid crystals and reactive mesogens. ACS Appl. Mater. Interfaces, 2021, 13(34), 41066-41074. doi:10.1021/acsami.1c10377http://dx.doi.org/10.1021/acsami.1c10377
Guo S. M.; Liang X.; Zhang C. H.; Chen M.; Shen C.; Zhang L. Y.; Yuan X.; He B. F.; Yang H. Preparation of a thermally light-transmittance-controllable film from a coexistent system of polymer-dispersed and polymer-stabilized liquid crystals. ACS Appl. Mater. Interfaces, 2017, 9(3), 2942-2947. doi:10.1021/acsami.6b13366http://dx.doi.org/10.1021/acsami.6b13366
Zheng Z. G.; Zhou L.; Shen D.; Xuan L. Holographic polymer-dispersed liquid crystal grating with low scattering losses. Liq. Cryst., 2012, 39(3), 387-391. doi:10.1080/02678292.2012.656716http://dx.doi.org/10.1080/02678292.2012.656716
Hu Y. F.; Kowalski B. A.; Mavila S.; Podgórski M.; Sinha J.; Sullivan A. C.; McLeod R. R.; Bowman C. N. Holographic photopolymer material with high dynamic range (Δn) via thiol-ene click chemistry. ACS Appl. Mater. Interfaces, 2020, 12(39), 44103-44109. doi:10.1021/acsami.0c08872http://dx.doi.org/10.1021/acsami.0c08872
Bruder F. K.; Frank J.; Hansen S.; Künzel R.; Manecke C.; Meisenheimer R.; Mills J.; Pitzer L.; Rölle T.; Wewer B. New ways how to apply Bayfol HX® film into recording stacks and into optical parts. Proc. SPIE, 2020, 11367, 1136715. doi:10.1117/12.2555429http://dx.doi.org/10.1117/12.2555429
解孝林, 彭海炎, 倪名立. 全息高分子材料. 北京: 科学出版社, 2020.
Lu H.; Carioscia J. A.; Stansbury J. W.; Bowman C. N. Investigations of step-growth thiol-ene polymerizations for novel dental restoratives. Dent. Mater., 2005, 21(12), 1129-1136. doi:10.1016/j.dental.2005.04.001http://dx.doi.org/10.1016/j.dental.2005.04.001
Hoyle C. E.; Bowman, C. N. Thiol-ene click chemistry. Angew. Chem. Int. Ed., 2010, 49(9), 1540-1573. doi:10.1002/anie.200903924http://dx.doi.org/10.1002/anie.200903924
Choi K.; Chon J. W. M.; Gu M.; Malic N.; Evans R. A. Low-distortion holographic data storage media using free-radical ring-opening polymerization. Adv. Funct. Mater., 2009, 19(22), 3560-3566. doi:10.1002/adfm.200900437http://dx.doi.org/10.1002/adfm.200900437
Kim W. S.; Jeong Y. C.; Park J. K. Organic-inorganic hybrid photopolymer with reduced volume shrinkage. Appl. Phys. Lett., 2005, 87(1), 012106. doi:10.1063/1.1954884http://dx.doi.org/10.1063/1.1954884
Kim E. H.; Woo J. Y.; Kim B. K. Nanosized-silica-reinforced holographic polymer-dispersed liquid crystals. Macromol. Rapid Commun., 2006, 27(7), 553-557. doi:10.1002/marc.200500784http://dx.doi.org/10.1002/marc.200500784
Yeh J.; Harton A.; Wyatt K. Reliability study of holographic optical elements made with DuPont photopolymer. Appl. Opt., 1998, 37(26), 6270-6274. doi:10.1364/ao.37.006270http://dx.doi.org/10.1364/ao.37.006270
Bruder F. K.; Frank J.; Hansen S.; Künzel R.; Künzel J.; Lorenz A.; Manecke C.; Meisenheimer R.; Mills J.; Pitzer L.; Pochorovski I.; Rölle T. Reliable photopolymer for new applications: vHOEs recorded into Bayfol HX film resisting the environment. Proc. SPIE, 2022, 12026, 1202602. doi:10.1117/12.2607740http://dx.doi.org/10.1117/12.2607740
Gambogi W.; Weber A.; Trout T. J. Advances and applications of DuPont holographic photopolymers. Proc. SPIE, 1994, 2043, 2-13. doi:10.1117/12.165557http://dx.doi.org/10.1117/12.165557
Bruder F. K.; Frank J.; Hansen S.; Lorenz A.; Manecke C.; Meisenheimer R.; Mills J.; Pitzer L.; Pochorovski I.; Rölle T. Latest Bayfol HX® developments: Ultrahigh index modulation and NIR recordable holographic films. Proc. SPIE, 2021, 11788, 117880B. doi:10.1117/12.2595421http://dx.doi.org/10.1117/12.2595421
Waldern J. D.; Abraham S.; Popovich M. M. DigiLens holographic photopolymers for wide angle AR waveguides. Proc. SPIE, 2020, 11367, 113670O. doi:10.1117/12.2561344http://dx.doi.org/10.1117/12.2561344
0
Views
156
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution